論文の概要: Exploring Advanced Large Language Models with LLMsuite
- arxiv url: http://arxiv.org/abs/2407.12036v2
- Date: Tue, 12 Nov 2024 10:12:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:18:47.802379
- Title: Exploring Advanced Large Language Models with LLMsuite
- Title(参考訳): LLMsuiteによる高度な大規模言語モデルの探索
- Authors: Giorgio Roffo,
- Abstract要約: このチュートリアルでは、大規模言語モデルの開発における進歩と課題について説明する。
Retrieval Augmented Generation (RAG)、Program-Aided Language Models (PAL)、ReActやLangChainといったフレームワークなどのソリューションを提案する。
- 参考スコア(独自算出の注目度): 1.2058143465239939
- License:
- Abstract: This tutorial explores the advancements and challenges in the development of Large Language Models (LLMs) such as ChatGPT and Gemini. It addresses inherent limitations like temporal knowledge cutoffs, mathematical inaccuracies, and the generation of incorrect information, proposing solutions like Retrieval Augmented Generation (RAG), Program-Aided Language Models (PAL), and frameworks such as ReAct and LangChain. The integration of these techniques enhances LLM performance and reliability, especially in multi-step reasoning and complex task execution. The paper also covers fine-tuning strategies, including instruction fine-tuning, parameter-efficient methods like LoRA, and Reinforcement Learning from Human Feedback (RLHF) as well as Reinforced Self-Training (ReST). Additionally, it provides a comprehensive survey of transformer architectures and training techniques for LLMs. The source code can be accessed by contacting the author via email for a request.
- Abstract(参考訳): このチュートリアルでは、ChatGPTやGeminiといった大規模言語モデル(LLM)の開発における進歩と課題について説明する。
時間的知識の遮断、数学的不正確さ、不正確な情報の生成、Retrieval Augmented Generation (RAG)、Program-Aided Language Models (PAL)などのソリューションの提案、ReActやLangChainといったフレームワークなど、固有の制限に対処する。
これらの技術の統合により、特に多段階推論や複雑なタスク実行において、LLMの性能と信頼性が向上する。
また,教示微調整,LoRAのようなパラメータ効率のよい手法,RLHF(Reinforcement Learning from Human Feedback),Reinforced Self-Training(ReST)などの微調整戦略についても検討した。
さらに、LLMのためのトランスフォーマーアーキテクチャとトレーニング技術に関する包括的な調査も提供する。
ソースコードは、要求のために電子メールで著者に連絡することでアクセスすることができる。
関連論文リスト
- Teaching Models to Improve on Tape [30.330699770714165]
大きな言語モデル(LLM)は、特定の制約の下でコンテンツを生成するよう促されたときにしばしば苦労する。
最近の研究によると、LLMはそのような「修正的フィードバック」の恩恵を受けることができる。
本稿では,そのような報酬をモデルに教えるためのRLフレームワークを紹介し,その制約を満たす能力に応じてモデルに報酬を与える。
論文 参考訳(メタデータ) (2024-11-03T08:49:55Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - ChatGLM-Math: Improving Math Problem-Solving in Large Language Models with a Self-Critique Pipeline [42.61538071832468]
大規模言語モデル(LLM)は、人間の言語の優れた習得を示すが、数学的な問題解決を必要とする現実世界のアプリケーションでは依然として苦戦している。
LLMアライメントのフィードバック学習段階における課題に対処する自己批判パイプラインを調整します。
論文 参考訳(メタデータ) (2024-04-03T17:51:18Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示した。
ビデオベースの対話システムでビデオを効果的にエンコードし、理解する方法は、まだ解決されていない。
LLM内部の時空間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T10:11:26Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Continual Learning for Large Language Models: A Survey [95.79977915131145]
大規模言語モデル(LLM)は、大規模なトレーニングコストが高いため、頻繁な再トレーニングには適さない。
本稿では,LLMの連続学習に関する最近の研究について述べる。
論文 参考訳(メタデータ) (2024-02-02T12:34:09Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。