Learning on Graphs with Large Language Models(LLMs): A Deep Dive into Model Robustness
- URL: http://arxiv.org/abs/2407.12068v2
- Date: Sun, 28 Jul 2024 16:44:21 GMT
- Title: Learning on Graphs with Large Language Models(LLMs): A Deep Dive into Model Robustness
- Authors: Kai Guo, Zewen Liu, Zhikai Chen, Hongzhi Wen, Wei Jin, Jiliang Tang, Yi Chang,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable performance across various natural language processing tasks.
It remains unclear whether LLMs exhibit robustness in learning on graphs.
- Score: 39.57155321515097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable performance across various natural language processing tasks. Recently, several LLMs-based pipelines have been developed to enhance learning on graphs with text attributes, showcasing promising performance. However, graphs are well-known to be susceptible to adversarial attacks and it remains unclear whether LLMs exhibit robustness in learning on graphs. To address this gap, our work aims to explore the potential of LLMs in the context of adversarial attacks on graphs. Specifically, we investigate the robustness against graph structural and textual perturbations in terms of two dimensions: LLMs-as-Enhancers and LLMs-as-Predictors. Through extensive experiments, we find that, compared to shallow models, both LLMs-as-Enhancers and LLMs-as-Predictors offer superior robustness against structural and textual attacks.Based on these findings, we carried out additional analyses to investigate the underlying causes. Furthermore, we have made our benchmark library openly available to facilitate quick and fair evaluations, and to encourage ongoing innovative research in this field.
Related papers
- GraphICL: Unlocking Graph Learning Potential in LLMs through Structured Prompt Design [13.365623514253926]
Graph In-context Learning (GraphICL) Benchmark is a comprehensive benchmark comprising novel prompt templates to capture graph structure and handle limited label knowledge.
Our systematic evaluation shows that general-purpose LLMs equipped with our GraphICL outperform state-of-the-art specialized graph LLMs and graph neural network models.
arXiv Detail & Related papers (2025-01-27T03:50:30Z) - Benchmarking and Improving Large Vision-Language Models for Fundamental Visual Graph Understanding and Reasoning [33.85555387495046]
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across diverse tasks.
Recent studies show that LVLMs encounter substantial limitations when engaging with visual graphs.
We propose VGCure, a benchmark covering 22 tasks for examining the fundamental graph understanding and reasoning capacities of LVLMs.
arXiv Detail & Related papers (2024-12-18T06:35:18Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
We focus on the graph reasoning ability of Large Language Models (LLMs)
We revisit the ability of LLMs on three fundamental graph tasks: graph description translation, graph connectivity, and the shortest-path problem.
Our findings suggest that LLMs can fail to understand graph structures through text descriptions and exhibit varying performance for all these fundamental tasks.
arXiv Detail & Related papers (2024-08-18T16:26:39Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
Graph generation requires large language models (LLMs) to generate graphs with given properties.
This paper explores the abilities of LLMs for graph generation with systematical task designs and experiments.
Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks.
arXiv Detail & Related papers (2024-03-21T12:37:54Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
We present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs.
Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers.
Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-27T14:00:04Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.