Private prediction for large-scale synthetic text generation
- URL: http://arxiv.org/abs/2407.12108v2
- Date: Wed, 9 Oct 2024 17:45:07 GMT
- Title: Private prediction for large-scale synthetic text generation
- Authors: Kareem Amin, Alex Bie, Weiwei Kong, Alexey Kurakin, Natalia Ponomareva, Umar Syed, Andreas Terzis, Sergei Vassilvitskii,
- Abstract summary: We present an approach for generating differentially private synthetic text using large language models (LLMs)
In the private prediction framework, we only require the output synthetic data to satisfy differential privacy guarantees.
- Score: 28.488459921169905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach for generating differentially private synthetic text using large language models (LLMs), via private prediction. In the private prediction framework, we only require the output synthetic data to satisfy differential privacy guarantees. This is in contrast to approaches that train a generative model on potentially sensitive user-supplied source data and seek to ensure the model itself is safe to release. We prompt a pretrained LLM with source data, but ensure that next-token predictions are made with differential privacy guarantees. Previous work in this paradigm reported generating a small number of examples (<10) at reasonable privacy levels, an amount of data that is useful only for downstream in-context learning or prompting. In contrast, we make changes that allow us to generate thousands of high-quality synthetic data points, greatly expanding the set of potential applications. Our improvements come from an improved privacy analysis and a better private selection mechanism, which makes use of the equivalence between the softmax layer for sampling tokens in LLMs and the exponential mechanism. Furthermore, we introduce a novel use of public predictions via the sparse vector technique, in which we do not pay privacy costs for tokens that are predictable without sensitive data; we find this to be particularly effective for structured data.
Related papers
- Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
We propose a new framework that boosts the alignment of large language models (LLMs) with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - PEOPL: Characterizing Privately Encoded Open Datasets with Public Labels [59.66777287810985]
We introduce information-theoretic scores for privacy and utility, which quantify the average performance of an unfaithful user.
We then theoretically characterize primitives in building families of encoding schemes that motivate the use of random deep neural networks.
arXiv Detail & Related papers (2023-03-31T18:03:53Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Synthetic Text Generation with Differential Privacy: A Simple and
Practical Recipe [32.63295550058343]
We show that a simple and practical recipe in the text domain is effective in generating useful synthetic text with strong privacy protection.
Our method produces synthetic text that is competitive in terms of utility with its non-private counterpart.
arXiv Detail & Related papers (2022-10-25T21:21:17Z) - Differentially Private Language Models for Secure Data Sharing [19.918137395199224]
In this paper, we show how to train a generative language model in a differentially private manner and consequently sampling data from it.
Using natural language prompts and a new prompt-mismatch loss, we are able to create highly accurate and fluent textual datasets.
We perform thorough experiments indicating that our synthetic datasets do not leak information from our original data and are of high language quality.
arXiv Detail & Related papers (2022-10-25T11:12:56Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy.
Unlike existing approaches for training differentially private generative models, we do not rely on adversarial objectives.
arXiv Detail & Related papers (2021-11-01T18:10:21Z) - P3GM: Private High-Dimensional Data Release via Privacy Preserving
Phased Generative Model [23.91327154831855]
This paper proposes privacy-preserving phased generative model (P3GM) for releasing sensitive data.
P3GM employs the two-phase learning process to make it robust against the noise, and to increase learning efficiency.
Compared with the state-of-the-art methods, our generated samples look fewer noises and closer to the original data in terms of data diversity.
arXiv Detail & Related papers (2020-06-22T09:47:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.