論文の概要: Compound Expression Recognition via Multi Model Ensemble for the ABAW7 Challenge
- arxiv url: http://arxiv.org/abs/2407.12257v1
- Date: Wed, 17 Jul 2024 01:59:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 18:49:00.099821
- Title: Compound Expression Recognition via Multi Model Ensemble for the ABAW7 Challenge
- Title(参考訳): ABAW7チャレンジのためのマルチモデルアンサンブルによる複合表現認識
- Authors: Xuxiong Liu, Kang Shen, Jun Yao, Boyan Wang, Minrui Liu, Liuwei An, Zishun Cui, Weijie Feng, Xiao Sun,
- Abstract要約: 複合表現認識(CER)は、効果的な対人相互作用に不可欠である。
本稿では,この複雑さに対処するアンサンブル学習に基づくソリューションを提案する。
提案手法はRAF-DBデータセット上で高い精度を示し,ゼロショット学習によりC-EXPR-DBの一部の表現を認識できる。
- 参考スコア(独自算出の注目度): 6.26485278174662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compound Expression Recognition (CER) is vital for effective interpersonal interactions. Human emotional expressions are inherently complex due to the presence of compound expressions, requiring the consideration of both local and global facial cues for accurate judgment. In this paper, we propose an ensemble learning-based solution to address this complexity. Our approach involves training three distinct expression classification models using convolutional networks, Vision Transformers, and multiscale local attention networks. By employing late fusion for model ensemble, we combine the outputs of these models to predict the final results. Our method demonstrates high accuracy on the RAF-DB datasets and is capable of recognizing expressions in certain portions of the C-EXPR-DB through zero-shot learning.
- Abstract(参考訳): 複合表現認識(CER)は、効果的な対人相互作用に不可欠である。
ヒトの感情表現は、複合表現の存在により本質的に複雑であり、正確な判断には局所的およびグローバルな顔の手がかりの両方を考慮する必要がある。
本稿では,この複雑さに対処するアンサンブル学習に基づくソリューションを提案する。
提案手法では,畳み込みネットワーク,視覚変換器,マルチスケールローカルアテンションネットワークを用いて,3つの表現分類モデルを訓練する。
モデルアンサンブルに後期融合を用いることで、これらのモデルの出力を組み合わせて最終的な結果を予測する。
提案手法はRAF-DBデータセット上で高い精度を示し,ゼロショット学習によりC-EXPR-DBの一部の表現を認識できる。
関連論文リスト
- Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
テキストと画像の拡散モデルに光を流す新しいHOI検出器であるDIFfusionHOIを紹介する。
まず、埋め込み空間における人間と物体の関係パターンの表現をインバージョンベースで学習する戦略を考案する。
これらの学習された関係埋め込みはテキストのプロンプトとして機能し、スタイア拡散モデルが特定の相互作用を記述する画像を生成する。
論文 参考訳(メタデータ) (2024-10-26T12:00:33Z) - Compound Expression Recognition via Multi Model Ensemble [8.529105068848828]
複合表現認識は対人相互作用において重要な役割を果たす。
本稿では,複合表現認識のためのアンサンブル学習手法に基づく解を提案する。
提案手法はRAF-DBの精度が高く,C-EXPR-DBの一部部分でゼロショットで表現を認識できる。
論文 参考訳(メタデータ) (2024-03-19T09:30:56Z) - Zero-shot Compound Expression Recognition with Visual Language Model at the 6th ABAW Challenge [11.49671335206114]
従来のCNNネットワークと統合された事前学習された視覚言語モデルを活用することで,複合表現の認識のためのゼロショットアプローチを提案する。
本研究では,従来のCNNネットワークと統合された事前学習された視覚言語モデルを活用することで,複合表現認識のためのゼロショットアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-18T03:59:24Z) - Video Relationship Detection Using Mixture of Experts [1.6574413179773761]
本稿では,専門家の混在を利用した視覚的関係検出手法であるMoE-VRDを紹介する。
MoE-VRDは、視覚処理から関係を抽出するために、主語、述語、オブジェクトの形で言語三つ子を識別する。
実験結果から, 条件付き計算能力と混合実験手法のスケーラビリティは, 最先端手法と比較して, 視覚的関係の検出性能に優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-03-06T19:08:34Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
近年のインタラクティブセグメンテーション手法では,入力としてソースイメージ,ユーザガイダンス,従来予測されていたマスクを反復的に取り込んでいる。
本稿では,本質的な相違点に基づいてモデリングコンポーネントを分離するFDRN(Feature Decoupling-Recycling Network)を提案する。
論文 参考訳(メタデータ) (2023-08-07T12:26:34Z) - Language-free Compositional Action Generation via Decoupling Refinement [67.50452446686725]
本稿では,言語補助に頼らずに作曲行動を生成する新しい枠組みを提案する。
このアプローチは,アクション結合,条件付きアクション生成,デカップリングリファインメントという3つの主要コンポーネントから構成される。
論文 参考訳(メタデータ) (2023-07-07T12:00:38Z) - Learning Diversified Feature Representations for Facial Expression
Recognition in the Wild [97.14064057840089]
本稿では,CNN層が抽出した顔表情認識アーキテクチャの特徴を多様化する機構を提案する。
AffectNet,FER+,RAF-DBの3つの顔表情認識実験の結果,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-10-17T19:25:28Z) - Exploiting Emotional Dependencies with Graph Convolutional Networks for
Facial Expression Recognition [31.40575057347465]
本稿では,視覚における表情認識のためのマルチタスク学習フレームワークを提案する。
MTL設定において、離散認識と連続認識の両方のために共有特徴表現が学習される。
実験の結果,本手法は離散FER上での最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2021-06-07T10:20:05Z) - Feature Decomposition and Reconstruction Learning for Effective Facial
Expression Recognition [80.17419621762866]
本稿では,表情認識のための特徴分解再構成学習(FDRL)手法を提案する。
FDRLは、FDN(Feature Decomposition Network)とFRN(Feature Restruction Network)の2つの重要なネットワークで構成されている。
論文 参考訳(メタデータ) (2021-04-12T02:22:45Z) - A Multi-resolution Approach to Expression Recognition in the Wild [9.118706387430883]
顔認識タスクを解決するためのマルチリゾリューション手法を提案する。
私たちは、しばしば異なる解像度で画像が取得されるという観察を直感的に根拠としています。
我々は、Affect-in-the-Wild 2データセットに基づいてトレーニングされたSqueeze-and-Excitationブロックを備えたResNetのようなアーキテクチャを使用する。
論文 参考訳(メタデータ) (2021-03-09T21:21:02Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。