論文の概要: Generating 3D House Wireframes with Semantics
- arxiv url: http://arxiv.org/abs/2407.12267v1
- Date: Wed, 17 Jul 2024 02:33:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 18:38:37.298098
- Title: Generating 3D House Wireframes with Semantics
- Title(参考訳): セマンティックスによる3次元住宅ワイヤーフレームの生成
- Authors: Xueqi Ma, Yilin Liu, Wenjun Zhou, Ruowei Wang, Hui Huang,
- Abstract要約: 本稿では, 自己回帰モデルを用いて, セマンティックエンリッチメントを用いた3次元住宅の創出手法を提案する。
意味に基づくワイヤシーケンスを並べ替えることで,3次元ワイヤフレーム構造をシームレスに学習する。
- 参考スコア(独自算出の注目度): 11.408526398063712
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a new approach for generating 3D house wireframes with semantic enrichment using an autoregressive model. Unlike conventional generative models that independently process vertices, edges, and faces, our approach employs a unified wire-based representation for improved coherence in learning 3D wireframe structures. By re-ordering wire sequences based on semantic meanings, we facilitate seamless semantic integration during sequence generation. Our two-phase technique merges a graph-based autoencoder with a transformer-based decoder to learn latent geometric tokens and generate semantic-aware wireframes. Through iterative prediction and decoding during inference, our model produces detailed wireframes that can be easily segmented into distinct components, such as walls, roofs, and rooms, reflecting the semantic essence of the shape. Empirical results on a comprehensive house dataset validate the superior accuracy, novelty, and semantic fidelity of our model compared to existing generative models. More results and details can be found on https://vcc.tech/research/2024/3DWire.
- Abstract(参考訳): 本稿では, 自己回帰モデルを用いて, セマンティックエンリッチメントを用いた3次元ハウスワイヤフレームの生成手法を提案する。
頂点,辺,面を独立に処理する従来の生成モデルとは異なり,本手法では,3次元ワイヤフレーム構造学習におけるコヒーレンス向上のために,統一されたワイヤベース表現を用いる。
意味的意味に基づくワイヤシーケンスを並べ替えることで、シーケンス生成時のシームレスなセマンティック統合を容易にする。
我々の2フェーズ技術はグラフベースのオートエンコーダとトランスフォーマーベースのデコーダを融合し、潜在幾何学的トークンを学習し、セマンティック・アウェア・ワイヤフレームを生成する。
推論中の反復的予測と復号化により,本モデルは,壁や屋根,部屋などの異なる構成要素に容易に分割可能な細かなワイヤフレームを生成し,形状のセマンティックな本質を反映する。
包括的住宅データセットを用いた実証実験の結果,既存の生産モデルと比較して,モデルの精度,斬新さ,意味的忠実度が優れていた。
さらなる結果と詳細はhttps://vcc.tech/research/2024/3DWireで確認できる。
関連論文リスト
- MeshXL: Neural Coordinate Field for Generative 3D Foundation Models [51.1972329762843]
本稿では,現代の大規模言語モデルを用いた3次元メッシュ生成のプロセスに対処する,事前学習型自己回帰モデルの生成ファミリを提案する。
MeshXLは高品質な3Dメッシュを生成することができ、さまざまなダウンストリームアプリケーションの基盤モデルとしても機能する。
論文 参考訳(メタデータ) (2024-05-31T14:35:35Z) - PivotMesh: Generic 3D Mesh Generation via Pivot Vertices Guidance [66.40153183581894]
汎用的でスケーラブルなメッシュ生成フレームワークであるPivotMeshを紹介します。
PivotMeshは、ネイティブメッシュ生成を大規模データセットに拡張する最初の試みである。
PivotMeshは,様々なカテゴリにまたがって,コンパクトでシャープな3Dメッシュを生成することができることを示す。
論文 参考訳(メタデータ) (2024-05-27T07:13:13Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
自己回帰モデルでは,格子空間における関節分布をモデル化することにより,2次元画像生成において顕著な結果が得られた。
自動回帰モデルを3次元領域に拡張し,キャパシティとスケーラビリティを同時に向上することにより,3次元形状生成の強力な能力を求める。
論文 参考訳(メタデータ) (2024-02-19T15:33:09Z) - Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D
Reconstruction with Transformers [37.14235383028582]
本稿では,フィードフォワード推論を用いて,単一画像から3次元モデルを効率よく生成する,一視点再構成のための新しい手法を提案する。
提案手法では,2つのトランスフォーマーネットワーク,すなわちポイントデコーダとトリプレーンデコーダを用いて,ハイブリッドトリプレーン・ガウス中間表現を用いて3次元オブジェクトを再構成する。
論文 参考訳(メタデータ) (2023-12-14T17:18:34Z) - MeT: A Graph Transformer for Semantic Segmentation of 3D Meshes [10.667492516216887]
本稿では3次元メッシュのセマンティックセグメンテーションのためのトランスフォーマーに基づく手法を提案する。
隣接行列のラプラシア固有ベクトルを用いて位置符号化を行う。
提案手法は,3次元メッシュのセマンティックセグメンテーションにおける最先端の性能を示す。
論文 参考訳(メタデータ) (2023-07-03T15:45:14Z) - Learning Versatile 3D Shape Generation with Improved AR Models [91.87115744375052]
自己回帰(AR)モデルはグリッド空間の関節分布をモデル化することにより2次元画像生成において印象的な結果を得た。
本稿では3次元形状生成のための改良された自己回帰モデル(ImAM)を提案する。
論文 参考訳(メタデータ) (2023-03-26T12:03:18Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
3Dメッシュの表現学習は多くのコンピュータビジョンやグラフィックスアプリケーションにおいて重要である。
局所構造認識型異方性畳み込み操作(LSA-Conv)を提案する。
本モデルでは,3次元形状復元において最先端の手法に比べて顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-04-21T13:40:03Z) - Convolutional Occupancy Networks [88.48287716452002]
本稿では,オブジェクトと3Dシーンの詳細な再構築のための,より柔軟な暗黙的表現である畳み込み機能ネットワークを提案する。
畳み込みエンコーダと暗黙の占有デコーダを組み合わせることで、帰納的バイアスが組み込まれ、3次元空間における構造的推論が可能となる。
実験により,本手法は単一物体の微細な3次元再構成,大規模屋内シーンへのスケール,合成データから実データへの一般化を可能にした。
論文 参考訳(メタデータ) (2020-03-10T10:17:07Z) - PolyGen: An Autoregressive Generative Model of 3D Meshes [22.860421649320287]
本稿では,Transformerベースのアーキテクチャを用いてメッシュを直接モデル化するアプローチを提案する。
我々のモデルは、オブジェクトクラス、ボクセル、イメージなど、様々な入力を条件にすることができる。
このモデルでは、高品質で使い勝手の良いメッシュを生成でき、メッシュモデリングタスクのためのログライクなベンチマークを確立することができる。
論文 参考訳(メタデータ) (2020-02-23T17:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。