Morphosyntactic Analysis for CHILDES
- URL: http://arxiv.org/abs/2407.12389v1
- Date: Wed, 17 Jul 2024 08:11:24 GMT
- Title: Morphosyntactic Analysis for CHILDES
- Authors: Houjun Liu, Brian MacWhinney,
- Abstract summary: We have been transcribing and linking data for the CHILDES database.
We have applied the UD (Universal Dependencies) framework to provide a consistent and comparable morphosyntactic analysis for 27 languages.
- Score: 1.6258710071587594
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Language development researchers are interested in comparing the process of language learning across languages. Unfortunately, it has been difficult to construct a consistent quantitative framework for such comparisons. However, recent advances in AI (Artificial Intelligence) and ML (Machine Learning) are providing new methods for ASR (automatic speech recognition) and NLP (natural language processing) that can be brought to bear on this problem. Using the Batchalign2 program (Liu et al., 2023), we have been transcribing and linking data for the CHILDES database and have applied the UD (Universal Dependencies) framework to provide a consistent and comparable morphosyntactic analysis for 27 languages. These new resources open possibilities for deeper crosslinguistic study of language learning.
Related papers
- The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
We present Belebele, a dataset spanning 122 language variants.
This dataset enables the evaluation of text models in high-, medium-, and low-resource languages.
arXiv Detail & Related papers (2023-08-31T17:43:08Z) - Multi-level Contrastive Learning for Cross-lingual Spoken Language
Understanding [90.87454350016121]
We develop novel code-switching schemes to generate hard negative examples for contrastive learning at all levels.
We develop a label-aware joint model to leverage label semantics for cross-lingual knowledge transfer.
arXiv Detail & Related papers (2022-05-07T13:44:28Z) - Cross-Lingual Adaptation for Type Inference [29.234418962960905]
We propose a cross-lingual adaptation framework, PLATO, to transfer a deep learning-based type inference procedure across weakly typed languages.
By leveraging data from strongly typed languages, PLATO improves the perplexity of the backbone cross-programming-language model.
arXiv Detail & Related papers (2021-07-01T00:20:24Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
Language models (LMs) have proven surprisingly successful at capturing factual knowledge.
However, studies on LMs' factual representation ability have almost invariably been performed on English.
We create a benchmark of cloze-style probes for 23 typologically diverse languages.
arXiv Detail & Related papers (2020-10-13T05:29:56Z) - Automated Source Code Generation and Auto-completion Using Deep
Learning: Comparing and Discussing Current Language-Model-Related Approaches [0.0]
This paper compares different deep learning architectures to create and use language models based on programming code.
We discuss each approach's different strengths and weaknesses and what gaps we find to evaluate the language models or apply them in a real programming context.
arXiv Detail & Related papers (2020-09-16T15:17:04Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
The Software Naturalness hypothesis argues that programming languages can be understood through the same techniques used in natural language processing.
We explore this hypothesis through the use of a pre-trained transformer-based language model to perform code analysis tasks.
arXiv Detail & Related papers (2020-06-22T21:56:14Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
Cross-lingual Choice of Plausible Alternatives (XCOPA) is a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages.
We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods falls short compared to translation-based transfer.
arXiv Detail & Related papers (2020-05-01T12:22:33Z) - Natural Language Processing Advancements By Deep Learning: A Survey [0.755972004983746]
This survey categorizes and addresses the different aspects and applications of NLP that have benefited from deep learning.
It covers core NLP tasks and applications and describes how deep learning methods and models advance these areas.
arXiv Detail & Related papers (2020-03-02T21:32:05Z) - A Hybrid Approach to Dependency Parsing: Combining Rules and Morphology
with Deep Learning [0.0]
We propose two approaches to dependency parsing especially for languages with restricted amount of training data.
Our first approach combines a state-of-the-art deep learning-based with a rule-based approach and the second one incorporates morphological information into the network.
The proposed methods are developed for Turkish, but can be adapted to other languages as well.
arXiv Detail & Related papers (2020-02-24T08:34:33Z) - Rnn-transducer with language bias for end-to-end Mandarin-English
code-switching speech recognition [58.105818353866354]
We propose an improved recurrent neural network transducer (RNN-T) model with language bias to alleviate the problem.
We use the language identities to bias the model to predict the CS points.
This promotes the model to learn the language identity information directly from transcription, and no additional LID model is needed.
arXiv Detail & Related papers (2020-02-19T12:01:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.