Controlling Difficulty of Generated Text for AI-Assisted Language Learning
- URL: http://arxiv.org/abs/2506.04072v1
- Date: Wed, 04 Jun 2025 15:38:21 GMT
- Title: Controlling Difficulty of Generated Text for AI-Assisted Language Learning
- Authors: Meiqing Jin, Liam Dugan, Chris Callison-Burch,
- Abstract summary: Large language models (LLMs) generate text at a near-native level of complexity, making them ill-suited for beginner learners.<n>We investigate whether controllable generation techniques can adapt LLM outputs to better support absolute beginners.<n>Our findings show that while prompting alone fails to control output difficulty, the use of future discriminators significantly improves output comprehensibility.
- Score: 37.329743597873104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Practicing conversations with large language models (LLMs) presents a promising alternative to traditional in-person language learning. However, most LLMs generate text at a near-native level of complexity, making them ill-suited for beginner learners (CEFR: A1-A2). In this paper, we investigate whether controllable generation techniques -- specifically modular methods that do not require model fine-tuning -- can adapt LLM outputs to better support absolute beginners. We evaluate these methods through both automatic metrics and a user study with university-level learners of Japanese. Our findings show that while prompting alone fails to control output difficulty, the use of future discriminators (Yang and Klein, 2021) significantly improves output comprehensibility (from 40.4\% to 84.3\%). We further introduce a novel token-level evaluation metric, Token Miss Rate (TMR), that quantifies the proportion of incomprehensible tokens per utterance and correlates strongly with human judgments. To support future research in AI-assisted language learning, we release our code, models, annotation tools, and dataset.
Related papers
- TASE: Token Awareness and Structured Evaluation for Multilingual Language Models [8.058965963418785]
TASE is a benchmark designed to evaluate large language models' ability to perceive and reason about token-level information.<n> TASE covers 10 tasks under two core categories: token awareness and structural understanding, spanning Chinese, English, and Korean.<n>We evaluate over 30 leading commercial and open-source LLMs, including O3, Claude 4, Gemini 2.5 Pro, and DeepSeek-R1.
arXiv Detail & Related papers (2025-08-07T15:11:17Z) - Your Pretrained Model Tells the Difficulty Itself: A Self-Adaptive Curriculum Learning Paradigm for Natural Language Understanding [53.63482987410292]
We present a self-adaptive curriculum learning paradigm that prioritizes fine-tuning examples based on difficulty scores predicted by pre-trained language models.<n>We evaluate our method on four natural language understanding (NLU) datasets covering both binary and multi-class classification tasks.
arXiv Detail & Related papers (2025-07-13T19:36:17Z) - Prompting ChatGPT for Chinese Learning as L2: A CEFR and EBCL Level Study [0.45060992929802196]
This study explores how learners can use specific prompts to engage Large Language Models (LLM) as personalized chatbots.<n>Our goal is to develop prompts that integrate oral and written skills, using high-frequency character lists and controlling oral lexical productions.<n>The results indicate that incorporating level A1 and A1+ characters, along with the associated reference list, significantly enhances compliance with the EBCL character set.
arXiv Detail & Related papers (2025-01-25T15:30:13Z) - Shortcomings of LLMs for Low-Resource Translation: Retrieval and Understanding are Both the Problem [4.830018386227]
This work investigates the in-context learning abilities of pretrained large language models (LLMs) when instructed to translate text from a low-resource language into a high-resource language as part of an automated machine translation pipeline.
We conduct a set of experiments translating Southern Quechua to Spanish and examine the informativity of various types of context retrieved from a constrained database of digitized pedagogical materials and parallel corpora.
arXiv Detail & Related papers (2024-06-21T20:02:22Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - LC-Score: Reference-less estimation of Text Comprehension Difficulty [0.0]
We present textscLC-Score, a simple approach for training text comprehension metric for any French text without reference.
Our objective is to quantitatively capture the extend to which a text suits to the textitLangage Clair (LC, textitClear Language) guidelines.
We explore two approaches: (i) using linguistically motivated indicators used to train statistical models, and (ii) neural learning directly from text leveraging pre-trained language models.
arXiv Detail & Related papers (2023-10-04T11:49:37Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQM is a prompting technique which asks large language models to identify and categorize errors in translations.
We study the impact of labeled data through in-context learning and finetuning.
We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores.
arXiv Detail & Related papers (2023-08-14T17:17:21Z) - Preference-grounded Token-level Guidance for Language Model Fine-tuning [99.93045967478764]
Aligning language models with preferences is an important problem in natural language generation.<n>For LM training, based on the amount of supervised data, we present two minimalist learning objectives that utilize the learned guidance.<n>In experiments, our method performs competitively on two distinct representative LM tasks.
arXiv Detail & Related papers (2023-06-01T07:00:07Z) - Detecting Requirements Smells With Deep Learning: Experiences,
Challenges and Future Work [9.44316959798363]
This work aims to improve the previous work by creating a manually labeled dataset and using ensemble learning, Deep Learning (DL), and techniques such as word embeddings and transfer learning to overcome the generalization problem.
The current findings show that the dataset is unbalanced and which class examples should be added more.
arXiv Detail & Related papers (2021-08-06T12:45:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.