論文の概要: Continual Learning for Temporal-Sensitive Question Answering
- arxiv url: http://arxiv.org/abs/2407.12470v1
- Date: Wed, 17 Jul 2024 10:47:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 17:27:45.627348
- Title: Continual Learning for Temporal-Sensitive Question Answering
- Title(参考訳): 時間感性質問応答に対する継続的な学習
- Authors: Wanqi Yang, Yunqiu Xu, Yanda Li, Kunze Wang, Binbin Huang, Ling Chen,
- Abstract要約: 現実のアプリケーションでは、静的で完全なデータセットに頼るのではなく、モデルが時間とともに知識を継続的に取得することが重要です。
本稿では,モデルが進化を続ける情報ランドスケープに適応できる戦略について検討する。
時間記憶再生と時間的コントラスト学習を統合したCLTSQAのトレーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 12.76582814745124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we explore an emerging research area of Continual Learning for Temporal Sensitive Question Answering (CLTSQA). Previous research has primarily focused on Temporal Sensitive Question Answering (TSQA), often overlooking the unpredictable nature of future events. In real-world applications, it's crucial for models to continually acquire knowledge over time, rather than relying on a static, complete dataset. Our paper investigates strategies that enable models to adapt to the ever-evolving information landscape, thereby addressing the challenges inherent in CLTSQA. To support our research, we first create a novel dataset, divided into five subsets, designed specifically for various stages of continual learning. We then propose a training framework for CLTSQA that integrates temporal memory replay and temporal contrastive learning. Our experimental results highlight two significant insights: First, the CLTSQA task introduces unique challenges for existing models. Second, our proposed framework effectively navigates these challenges, resulting in improved performance.
- Abstract(参考訳): 本研究では,時間的感性質問応答(CLTSQA)のための継続学習の新たな研究領域について検討する。
従来の研究は主に時間感性質問回答(TSQA)に焦点を当てており、しばしば将来の出来事の予測不可能な性質を見落としている。
現実のアプリケーションでは、静的で完全なデータセットに頼るのではなく、モデルが時間とともに知識を継続的に取得することが重要です。
本稿では,CLTSQAに内在する課題に対処するため,モデルが絶え間なく進化する情報ランドスケープに適応できる戦略について検討する。
本研究を支援するために,我々はまず,連続学習の様々な段階に特化して設計された5つのサブセットからなる新しいデータセットを作成する。
次に、時間記憶再生と時間的コントラスト学習を統合したCLTSQAのトレーニングフレームワークを提案する。
まず、CLTSQAタスクは既存のモデルに固有の課題を導入します。
第2に、提案するフレームワークがこれらの課題を効果的にナビゲートし、パフォーマンスが向上する。
関連論文リスト
- Get Rid of Task Isolation: A Continuous Multi-task Spatio-Temporal Learning Framework [10.33844348594636]
我々は,都市の総合的知能を高めるために,連続マルチタスク時空間学習フレームワーク(CMuST)を提案することが不可欠であると主張する。
CMuSTは、都市時間学習を単一ドメインから協調マルチタスク学習に改革する。
マルチタスク時間学習のための3つの都市のベンチマークを作成し,CMuSTの優位性を実証的に実証した。
論文 参考訳(メタデータ) (2024-10-14T14:04:36Z) - Beyond Forecasting: Compositional Time Series Reasoning for End-to-End Task Execution [19.64976935450366]
時系列データから複雑な多段階推論タスクを処理する新しいタスクであるコンポジション時系列推論を導入する。
具体的には、時系列データに構造的および構成的推論能力を必要とする様々な質問事例に焦点を当てる。
我々は,大規模言語モデル(LLM)を用いて複雑なタスクをプログラムのステップに分解するプログラム支援手法であるTS-Reasonerを開発した。
論文 参考訳(メタデータ) (2024-10-05T06:04:19Z) - Empowering Large Language Model for Continual Video Question Answering with Collaborative Prompting [15.161997580529075]
本稿では,連続学習フレームワークにおけるビデオQAの新たな課題について考察する。
我々は,特定の質問制約の促進,知識獲得の促進,視覚的時間的認識の促進を統合した協調的プロンプト(ColPro)を提案する。
NExT-QAデータセットとDramaQAデータセットの実験的結果は、ColProが既存のアプローチよりも優れたパフォーマンスを達成することを示している。
論文 参考訳(メタデータ) (2024-10-01T15:07:07Z) - Towards LifeSpan Cognitive Systems [94.8985839251011]
複雑な環境と継続的に対話する人間のようなシステムを構築することは、いくつかの重要な課題を提示します。
我々は、この想定されたシステムをLifeSpan Cognitive System (LSCS)と呼ぶ。
LSCSの重要な特徴は、過去の経験を維持し、正確にリコールしながら、インクリメンタルで迅速な更新を行う機能である。
論文 参考訳(メタデータ) (2024-09-20T06:54:00Z) - P-RAG: Progressive Retrieval Augmented Generation For Planning on Embodied Everyday Task [94.08478298711789]
Embodied Everyday Taskは、インボディードAIコミュニティで人気のあるタスクである。
自然言語命令は明示的なタスクプランニングを欠くことが多い。
タスク環境に関する知識をモデルに組み込むには、広範囲なトレーニングが必要である。
論文 参考訳(メタデータ) (2024-09-17T15:29:34Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Recall-Oriented Continual Learning with Generative Adversarial
Meta-Model [5.710971447109951]
本稿では,安定性・塑性ジレンマに対処するリコール指向連続学習フレームワークを提案する。
人間の脳が安定性と可塑性のメカニズムを分離する能力に触発されて、私たちのフレームワークは2段階のアーキテクチャで構成されています。
我々は,新たな知識を効果的に学習するだけでなく,従来の知識の安定性も高いことを示す。
論文 参考訳(メタデータ) (2024-03-05T16:08:59Z) - Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning [73.51314109184197]
大規模言語モデル(LLM)には時間的知識の概念を理解することが不可欠である。
本稿では,複数質問応答と複数ホップの時間的推論に焦点をあてた複雑な時間的質問応答データセットであるComplex-TRを提案する。
論文 参考訳(メタデータ) (2023-11-16T11:49:29Z) - Continuous QA Learning with Structured Prompts [20.246786740364133]
Dianaは動的アーキテクチャベースの生涯QAモデルで、一連のQAタスクを学習しようとする。
階層的に整理された4つのプロンプトは、異なる粒度からQA知識を取得するためにダイアナで使用される。
実験では、Dianaは、特に目に見えないタスクの処理において、最先端のQAモデルよりも優れています。
論文 参考訳(メタデータ) (2022-08-31T02:38:16Z) - Sequential Transfer in Reinforcement Learning with a Generative Model [48.40219742217783]
本稿では,従来の課題から知識を移譲することで,新たな課題を学習する際のサンプルの複雑さを軽減する方法について述べる。
この種の事前知識を使用することのメリットを明確に示すために,PAC境界のサンプル複雑性を導出する。
簡単なシミュレートされた領域における理論的な発見を実証的に検証する。
論文 参考訳(メタデータ) (2020-07-01T19:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。