論文の概要: Crafting the Path: Robust Query Rewriting for Information Retrieval
- arxiv url: http://arxiv.org/abs/2407.12529v1
- Date: Wed, 17 Jul 2024 13:11:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 17:17:27.294852
- Title: Crafting the Path: Robust Query Rewriting for Information Retrieval
- Title(参考訳): パスを作る - 情報検索のためのロバストなクエリ書き換え
- Authors: Ingeol Baek, Jimin Lee, Joonho Yang, Hwanhee Lee,
- Abstract要約: 本稿では,検索システムに適した新しい構造化クエリ書き換え手法であるCrafting the Pathを提案する。
本研究では,本手法がモデルの内部パラメータの知識に依存せず,事実的不正確なクエリを生成することを示す。
- 参考スコア(独自算出の注目度): 4.252699657665555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Query rewriting aims to generate a new query that can complement the original query to improve the information retrieval system. Recent studies on query rewriting, such as query2doc (Q2D), query2expand (Q2E) and querey2cot (Q2C), rely on the internal knowledge of Large Language Models (LLMs) to generate a relevant passage to add information to the query. Nevertheless, the efficacy of these methodologies may markedly decline in instances where the requisite knowledge is not encapsulated within the model's intrinsic parameters. In this paper, we propose a novel structured query rewriting method called Crafting the Path tailored for retrieval systems. Crafting the Path involves a three-step process that crafts query-related information necessary for finding the passages to be searched in each step. Specifically, the Crafting the Path begins with Query Concept Comprehension, proceeds to Query Type Identification, and finally conducts Expected Answer Extraction. Experimental results show that our method outperforms previous rewriting methods, especially in less familiar domains for LLMs. We demonstrate that our method is less dependent on the internal parameter knowledge of the model and generates queries with fewer factual inaccuracies. Furthermore, we observe that Crafting the Path has less latency compared to the baselines.
- Abstract(参考訳): クエリの書き直しは、元のクエリを補完して情報検索システムを改善する新しいクエリを生成することを目的としている。
クエリ2doc(Q2D)、Query2expand(Q2E)、querey2cot(Q2C)などのクエリ書き換えに関する最近の研究は、クエリに情報を追加するための関連するパスを生成するために、Large Language Models(LLM)の内部知識に依存している。
それでも、これらの方法論の有効性は、モデル固有のパラメータに必須知識がカプセル化されていない場合において著しく低下する可能性がある。
本稿では,検索システム用に最適化された Crafting the Path という,構造化されたクエリ書き換え手法を提案する。
Pathを作るには3段階のプロセスが必要で、各ステップで検索されるパスを見つけるのに必要なクエリ関連情報を作成する。
具体的には、Crafting the PathはQuery Concept Comprehensionから始まり、Query Type Identificationに進み、最後に期待されたAnswer extractを実行する。
実験結果から,本手法は従来の書き直し手法,特にLLMの慣れ親しみのない領域において,優れた性能を示した。
本研究では,本手法がモデルの内部パラメータの知識に依存せず,事実的不正確なクエリを生成することを示す。
さらに,工法が基本ラインよりもレイテンシが低いことも確認した。
関連論文リスト
- Redefining Information Retrieval of Structured Database via Large Language Models [9.65171883231521]
本稿では,ChatLRと呼ばれる新しい検索拡張フレームワークを提案する。
主に、Large Language Models (LLM) の強力な意味理解能力を用いて、正確かつ簡潔な情報検索を実現する。
実験の結果、ChatLRがユーザクエリに対処する効果を示し、全体の情報検索精度は98.8%を超えた。
論文 参考訳(メタデータ) (2024-05-09T02:37:53Z) - LLM-R2: A Large Language Model Enhanced Rule-based Rewrite System for Boosting Query Efficiency [65.01402723259098]
本稿では,LLM-R2 という新しいクエリ書き換え手法を提案する。
実験結果から,本手法はクエリ実行効率を大幅に向上し,ベースライン法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-04-19T13:17:07Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - ConvGQR: Generative Query Reformulation for Conversational Search [37.54018632257896]
ConvGQRは、生成事前訓練された言語モデルに基づいて会話クエリを再構成する新しいフレームワークである。
本稿では,クエリ再構成と検索の両方を最適化する知識注入機構を提案する。
論文 参考訳(メタデータ) (2023-05-25T01:45:06Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
大規模言語モデル(LLM)は、検索対象のパイプラインで強力なブラックボックスリーダーを動作させる。
この作業では、検索拡張LDMに対する以前の検索テーマ読み込みの代わりに、新しいフレームワークであるRewrite-Retrieve-Readを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:27:50Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
本稿では,学習中に擬似クエリを利用して,生成したクエリと実際のクエリとの関係を徐々に向上させるカリキュラムサンプリング戦略を提案する。
ドメイン内およびドメイン外両方のデータセットに対する実験結果から,本手法が従来の高密度検索モデルより優れていることが示された。
論文 参考訳(メタデータ) (2022-12-18T15:57:46Z) - Query Understanding via Intent Description Generation [75.64800976586771]
問合せ理解のためのQ2ID(Query-to-Intent-Description)タスクを提案する。
クエリとその記述を利用してドキュメントの関連性を計算する既存のランキングタスクとは異なり、Q2IDは自然言語のインテント記述を生成するための逆タスクである。
Q2IDタスクにおける複数の最先端生成モデルとの比較により,本モデルの有効性を実証する。
論文 参考訳(メタデータ) (2020-08-25T08:56:40Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
本稿では,双方向トランスフォーマに基づくニューラルクエリ解決モデルQuReTeCを提案する。
我々はQuReTeCが最先端モデルより優れており、また、QuReTeCのトレーニングに必要な人為的なデータ量を大幅に削減するために、我々の遠隔監視手法が有効であることを示す。
論文 参考訳(メタデータ) (2020-05-24T11:37:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。