論文の概要: Navigating the Smog: A Cooperative Multi-Agent RL for Accurate Air Pollution Mapping through Data Assimilation
- arxiv url: http://arxiv.org/abs/2407.12539v1
- Date: Wed, 17 Jul 2024 13:24:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 17:07:03.150282
- Title: Navigating the Smog: A Cooperative Multi-Agent RL for Accurate Air Pollution Mapping through Data Assimilation
- Title(参考訳): データ同化による大気汚染の正確なマッピングのための協調的マルチエージェントRL
- Authors: Ichrak Mokhtari, Walid Bechkit, Mohamed Sami Assenine, Hervé Rivano,
- Abstract要約: 本稿では,自律型ドローンが空飛ぶ探偵として機能する,空気質マッピングの新しい手法を提案する。
当社のソリューションでは、ダイナミックなクレジット割り当てを備えたリターン機能を採用しており、ドローンによる情報測定の優先順位付けを可能にしている。
空気の質以外にも、このソリューションは山火事の検出や管理といった多様な環境問題に対処する可能性を秘めている。
- 参考スコア(独自算出の注目度): 1.692437325972209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid rise of air pollution events necessitates accurate, real-time monitoring for informed mitigation strategies. Data Assimilation (DA) methods provide promising solutions, but their effectiveness hinges heavily on optimal measurement locations. This paper presents a novel approach for air quality mapping where autonomous drones, guided by a collaborative multi-agent reinforcement learning (MARL) framework, act as airborne detectives. Ditching the limitations of static sensor networks, the drones engage in a synergistic interaction, adapting their flight paths in real time to gather optimal data for Data Assimilation (DA). Our approach employs a tailored reward function with dynamic credit assignment, enabling drones to prioritize informative measurements without requiring unavailable ground truth data, making it practical for real-world deployments. Extensive experiments using a real-world dataset demonstrate that our solution achieves significantly improved pollution estimates, even with limited drone resources or limited prior knowledge of the pollution plume. Beyond air quality, this solution unlocks possibilities for tackling diverse environmental challenges like wildfire detection and management through scalable and autonomous drone cooperation.
- Abstract(参考訳): 大気汚染の急激な増加は、情報緩和戦略のための正確なリアルタイムモニタリングを必要とする。
データ同化法(DA)は有望な解を提供するが、その有効性は最適な測定位置に大きく依存する。
本稿では,MARL(Multi-Adnt reinforcement Learning)フレームワークによって誘導される自律型ドローンが,空飛ぶ探偵として機能する,空気質マッピングの新しい手法を提案する。
静的センサーネットワークの限界を減らし、ドローンは相乗的相互作用を行い、飛行経路をリアルタイムで調整し、データ同化(DA)のための最適なデータを集める。
提案手法では, 動的信用代入による報酬関数を用いて, 地上の真理データを必要とせず, ドローンによる情報計測の優先順位付けが可能であり, 実世界の展開に有効である。
実世界のデータセットを用いた大規模な実験では、ドローンの資源が限られているり、汚染の事前知識が限られていたりしても、我々のソリューションは大気汚染の見積もりを大幅に改善することを示した。
空気の質以外にも、このソリューションは、スケーラブルで自律的なドローンの協力を通じて、山火事の検出や管理といった多様な環境問題に対処する可能性がある。
関連論文リスト
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
低地球軌道(LEO)衛星は、海上無線通信で広範囲にわたるデータ通信を支援するために使用できる。
LEO衛星を広範囲にカバーし、チャネルの開放性と組み合わせることで、通信プロセスはセキュリティ上のリスクに悩まされる可能性がある。
本稿では無人航空機による低高度衛星通信システムLEOについて述べる。
論文 参考訳(メタデータ) (2025-01-26T10:13:51Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
ドローンが捉えたデータは、大規模都市ネットワークのための正確なマルチセンサー移動観測所を作ることができる。
単純なグラフベースモデルHiMSNetは、複数のデータモダリティと学習時間相関を統合するために提案されている。
論文 参考訳(メタデータ) (2025-01-07T03:23:28Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - VBSF-TLD: Validation-Based Approach for Soft Computing-Inspired Transfer
Learning in Drone Detection [0.0]
本稿では,コンピュータビジョンベースモジュールの不可欠な部分を構成する移動型ドローン検出手法を提案する。
事前学習されたモデルの知識を関連ドメインから活用することにより、限られたトレーニングデータであっても、トランスファー学習によりより良い結果が得られる。
特に、このスキームの有効性は、IOUベースの検証結果によって強調される。
論文 参考訳(メタデータ) (2023-06-11T22:30:23Z) - FedBA: Non-IID Federated Learning Framework in UAV Networks [10.503796485713305]
本稿では,グローバルモデル最適化のための新しいアルゴリズムであるFedBAを提案する。
実験の結果、このアルゴリズムは他のアルゴリズムよりも優れており、UAVの局所モデルの精度が向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-10T13:55:55Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
重要な課題は、大規模な環境で取得したデータの価値を最大化するミッションを計画することである。
これは例えば、農地のモニタリングに関係している。
本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-03T11:03:28Z) - AirDet: Few-Shot Detection without Fine-tuning for Autonomous
Exploration [16.032316550612336]
本稿では,支援画像とのクラス関係の学習による微調整が不要なAirDetを提案する。
AirDetは、徹底的に微調整された方法と同等またはそれ以上の結果を達成し、ベースラインで最大40~60%の改善を実現している。
DARPA潜水試験における実地探査実験の評価結果について述べる。
論文 参考訳(メタデータ) (2021-12-03T06:41:07Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - Multi-UAV Path Planning for Wireless Data Harvesting with Deep
Reinforcement Learning [18.266087952180733]
本稿では,データ収集ミッションを定義するシナリオパラメータの深い変化に適応できるマルチエージェント強化学習(MARL)手法を提案する。
提案するネットワークアーキテクチャにより,データ収集タスクを慎重に分割することで,エージェントが効果的に協調できることを示す。
論文 参考訳(メタデータ) (2020-10-23T14:59:30Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。