IICPilot: An Intelligent Integrated Circuit Backend Design Framework Using Open EDA
- URL: http://arxiv.org/abs/2407.12576v2
- Date: Wed, 28 Aug 2024 03:15:10 GMT
- Title: IICPilot: An Intelligent Integrated Circuit Backend Design Framework Using Open EDA
- Authors: Zesong Jiang, Qing Zhang, Cheng Liu, Long Cheng, Huawei Li, Xiaowei Li,
- Abstract summary: IICPilot is an intelligent IC backend design system based on LLM technology.
LangChain's multi-agent framework efficiently handle distinct design tasks.
IICPilot separates the backend design workflow from specific open-source EDA tools.
- Score: 16.315795886650744
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Open-source EDA tools are rapidly advancing, fostering collaboration, innovation, and knowledge sharing within the EDA community. However, the growing complexity of these tools, characterized by numerous design parameters and heuristics, poses a significant barrier to their widespread adoption. This complexity is particularly pronounced in integrated circuit (IC) backend designs, which place substantial demands on engineers' expertise in EDA tools. To tackle this challenge, we introduce IICPilot, an intelligent IC backend design system based on LLM technology. IICPilot automates various backend design procedures, including script generation, EDA tool invocation, design space exploration of EDA parameters, container-based computing resource allocation, and exception management. By automating these tasks, IICPilot significantly lowers the barrier to entry for open-source EDA tools. Specifically, IICPilot utilizes LangChain's multi-agent framework to efficiently handle distinct design tasks, enabling flexible enhancements independently. Moreover, IICPilot separates the backend design workflow from specific open-source EDA tools through a unified EDA calling interface. This approach allows seamless integration with different open-source EDA tools like OpenROAD and iEDA, streamlining the backend design and optimization across the EDA tools.
Related papers
- Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - AI-Assisted Detector Design for the EIC (AID(2)E) [0.0]
The ePIC experiment incorporates numerous design parameters and objectives, including performance, physics reach, and cost.
This project aims to develop a scalable, distributed AI-assisted detector design for the EIC (AID(2)E)
arXiv Detail & Related papers (2024-05-25T15:33:44Z) - ESPnet-SPK: full pipeline speaker embedding toolkit with reproducible recipes, self-supervised front-ends, and off-the-shelf models [51.35570730554632]
ESPnet-SPK is a toolkit for training speaker embedding extractors.
We provide several models, ranging from x-vector to recent SKA-TDNN.
We also aspire to bridge developed models with other domains.
arXiv Detail & Related papers (2024-01-30T18:18:27Z) - LAMBO: Large AI Model Empowered Edge Intelligence [71.56135386994119]
Next-generation edge intelligence is anticipated to benefit various applications via offloading techniques.
Traditional offloading architectures face several issues, including heterogeneous constraints, partial perception, uncertain generalization, and lack of tractability.
We propose a Large AI Model-Based Offloading (LAMBO) framework with over one billion parameters for solving these problems.
arXiv Detail & Related papers (2023-08-29T07:25:42Z) - ChatEDA: A Large Language Model Powered Autonomous Agent for EDA [6.858976599086164]
This research paper introduces ChatEDA, an autonomous agent for EDA empowered by an LLM, AutoMage, and EDA tools serving as executors.
ChatEDA streamlines the design flow from the Register-Transfer Level (RTL) to the Graphic Data System Version II (GDSII) by effectively managing task decomposition, script generation, and task execution.
arXiv Detail & Related papers (2023-08-20T08:32:13Z) - VEDLIoT -- Next generation accelerated AIoT systems and applications [4.964750143168832]
The VEDLIoT project aims to develop energy-efficient Deep Learning methodologies for distributed Artificial Intelligence of Things (AIoT) applications.
We propose a holistic approach that focuses on optimizing algorithms while addressing safety and security challenges inherent to AIoT systems.
arXiv Detail & Related papers (2023-05-09T12:35:00Z) - Developing an AI-enabled IIoT platform -- Lessons learned from early use
case validation [47.37985501848305]
We introduce the design of this platform and discuss an early evaluation in terms of a demonstrator for AI-enabled visual quality inspection.
This is complemented by insights and lessons learned during this early evaluation activity.
arXiv Detail & Related papers (2022-07-10T18:51:12Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
We present Nemo, an end-to-end interactive Supervision system that improves overall productivity of WS learning pipeline by an average 20% (and up to 47% in one task) compared to the prevailing WS supervision approach.
arXiv Detail & Related papers (2022-03-02T19:57:32Z) - YMIR: A Rapid Data-centric Development Platform for Vision Applications [82.67319997259622]
This paper introduces an open source platform for rapid development of computer vision applications.
The platform puts the efficient data development at the center of the machine learning development process.
arXiv Detail & Related papers (2021-11-19T05:02:55Z) - Platform for Situated Intelligence [19.208956579428296]
We introduce Platform for Situated Intelligence, an open-source framework created to support the rapid development and study of multimodal, integrative-AI systems.
The framework provides infrastructure for sensing, fusing, and making inferences from temporal streams of data across different modalities.
arXiv Detail & Related papers (2021-03-29T22:30:15Z) - Workshops on Extreme Scale Design Automation (ESDA) Challenges and
Opportunities for 2025 and Beyond [10.439182852633788]
The CCC workshop series on Extreme-Scale Design Automation studied challenges faced by the EDA community.
This document represents a summary of the findings from these meetings.
arXiv Detail & Related papers (2020-05-04T15:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.