An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework
- URL: http://arxiv.org/abs/2504.14681v1
- Date: Sun, 20 Apr 2025 16:57:45 GMT
- Title: An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework
- Authors: Zeyu Wang, Frank P. -W. Lo, Qian Chen, Yongqi Zhang, Chen Lin, Xu Chen, Zhenhua Yu, Alexander J. Thompson, Eric M. Yeatman, Benny P. L. Lo,
- Abstract summary: This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering.<n> operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints.<n>A fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control.
- Score: 49.633199780510864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing LLM-enabled multi-agent frameworks are predominantly limited to digital or simulated environments and confined to narrowly focused knowledge domain, constraining their applicability to complex engineering tasks that require the design of physical embodiment, cross-disciplinary integration, and constraint-aware reasoning. This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering to autonomously generate functional prototypes with minimal direct human design input. Operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints. To validate its capabilities, the framework is applied to a real-world challenge involving autonomous water-quality monitoring and sampling, where traditional methods are labor-intensive and ecologically disruptive. Leveraging the proposed system, a fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control. The design process was carried out by specialized agents, including a high-level planning agent responsible for problem abstraction and dedicated agents for structural, electronics, control, and software development. This approach demonstrates the potential of LLM-based multi-agent systems to automate real-world engineering workflows and reduce reliance on extensive domain expertise.
Related papers
- General-Purpose Aerial Intelligent Agents Empowered by Large Language Models [9.603293922137965]
This paper presents the first aerial intelligent agent capable of open-world task execution.<n>Our hardware-software co-designed system addresses two fundamental limitations.<n>The system demonstrates reliable task planning and scene understanding in communication-constrained environments.
arXiv Detail & Related papers (2025-03-11T11:13:58Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
We introduce a novel framework for learning world models.<n>By providing a scalable and robust framework, we pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - EMOS: Embodiment-aware Heterogeneous Multi-robot Operating System with LLM Agents [33.77674812074215]
We introduce a novel multi-agent framework designed to enable effective collaboration among heterogeneous robots.<n>We propose a self-prompted approach, where agents comprehend robot URDF files and call robot kinematics tools to generate descriptions of their physics capabilities.<n>The Habitat-MAS benchmark is designed to assess how a multi-agent framework handles tasks that require embodiment-aware reasoning.
arXiv Detail & Related papers (2024-10-30T03:20:01Z) - Knowledge Graph Modeling-Driven Large Language Model Operating System (LLM OS) for Task Automation in Process Engineering Problem-Solving [0.0]
We present the Process Engineering Operations Assistant (PEOA), an AI-driven framework designed to solve complex problems in the chemical and process industries.
The framework employs a modular architecture orchestrated by a meta-agent, which serves as the central coordinator.
The results demonstrate the framework effectiveness in automating calculations, accelerating prototyping, and providing AI-augmented decision support for industrial processes.
arXiv Detail & Related papers (2024-08-23T13:52:47Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
We focus on designing a flexible agent engineering framework capable of handling complex use case applications across various domains.
The proposed framework provides reliability in industrial applications and presents techniques to ensure a scalable, flexible, and collaborative workflow for multiple autonomous agents.
arXiv Detail & Related papers (2024-06-28T16:39:20Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
Large language models (LLMs) have revolutionized the field of artificial intelligence, endowing it with sophisticated language understanding and generation capabilities.
This paper proposes a comprehensive multi-dimensional taxonomy to analyze how autonomous LLM-powered multi-agent systems balance the dynamic interplay between autonomy and alignment.
arXiv Detail & Related papers (2023-10-05T16:37:29Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.