論文の概要: Strawberry detection and counting based on YOLOv7 pruning and information based tracking algorithm
- arxiv url: http://arxiv.org/abs/2407.12614v1
- Date: Wed, 17 Jul 2024 14:41:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 16:45:33.233105
- Title: Strawberry detection and counting based on YOLOv7 pruning and information based tracking algorithm
- Title(参考訳): YOLOv7プルーニングと情報に基づく追跡アルゴリズムに基づくイチゴの検出とカウント
- Authors: Shiyu Liu, Congliang Zhou, Won Suk Lee,
- Abstract要約: 本研究は,イチゴの花,未熟果実,成熟果実の検出を迅速かつ正確に行うことができる深層学習モデル(YOLOv7とその変種)の検出ヘッドの最適刈り取り法を提案した。
特にPruning-YOLOv7-tiny with detection head 3とPruning-YOLOv7-tiny with head 2 and 3は最高の推論速度(毎秒163.9フレーム)と検出精度(89.1%)を達成した。
- 参考スコア(独自算出の注目度): 2.8246025005347875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The strawberry industry yields significant economic benefits for Florida, yet the process of monitoring strawberry growth and yield is labor-intensive and costly. The development of machine learning-based detection and tracking methodologies has been used for helping automated monitoring and prediction of strawberry yield, still, enhancement has been limited as previous studies only applied the deep learning method for flower and fruit detection, which did not consider the unique characteristics of image datasets collected by the machine vision system. This study proposed an optimal pruning of detection heads of the deep learning model (YOLOv7 and its variants) that could achieve fast and precise strawberry flower, immature fruit, and mature fruit detection. Thereafter, an enhanced object tracking algorithm, which is called the Information Based Tracking Algorithm (IBTA) utilized the best detection result, removed the Kalman Filter, and integrated moving direction, velocity, and spatial information to improve the precision in strawberry flower and fruit tracking. The proposed pruning of detection heads across YOLOv7 variants, notably Pruning-YOLOv7-tiny with detection head 3 and Pruning-YOLOv7-tiny with heads 2 and 3 achieved the best inference speed (163.9 frames per second) and detection accuracy (89.1%), respectively. On the other hand, the effect of IBTA was proved by comparing it with the centroid tracking algorithm (CTA), the Multiple Object Tracking Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP) of IBTA were 12.3% and 6.0% higher than that of CTA, accordingly. In addition, other object-tracking evaluation metrics, including IDF1, IDR, IDP, MT, and IDs, show that IBTA performed better than CTA in strawberry flower and fruit tracking.
- Abstract(参考訳): イチゴ産業はフロリダにとって大きな経済的利益をもたらすが、イチゴの成長と収量を監視するプロセスは労働集約的でコストがかかる。
機械学習による検出・追跡手法の開発は, イチゴ収量の自動モニタリング・予測に利用されているが, これまでの研究では, 画像データセットの独特の特徴を考慮せず, 花や果実の検出に深層学習法を適用しただけであったため, 改良が限られている。
本研究は,イチゴの花,未熟果実,成熟果実の検出を迅速かつ正確に行うことができる深層学習モデル(YOLOv7とその変種)の検出ヘッドの最適刈り取り法を提案した。
その後、情報ベース追跡アルゴリズム(IBTA)と呼ばれる拡張オブジェクト追跡アルゴリズムが、最良の検出結果を利用し、カルマンフィルタを除去し、移動方向、速度、空間情報を統合してイチゴの花と果物の追跡精度を向上させる。
提案された検出ヘッドは、検出ヘッド3のPruning-YOLOv7-tinyとヘッド2と3のPruning-YOLOv7-tinyでそれぞれ最高の推論速度(毎秒163.9フレーム)と検出精度(89.1%)を達成した。
一方、ICBTAは、CTA(Centroid Tracking Algorithm)、MOTA(Multiple Object Tracking Accuracy)、MOTP(Multiple Object Tracking Precision)と比較すると、CTAの12.3%と6.0%であった。
さらに, IDF1, IDR, IDP, MT, IDなどのオブジェクト追跡評価指標は, イチゴの花や果実の追跡において, IBTAがCTAよりも優れた性能を示した。
関連論文リスト
- Raspberry PhenoSet: A Phenology-based Dataset for Automated Growth Detection and Yield Estimation [1.2661567777618703]
7つの発達段階にまたがるラズベリー果実の検出とセグメンテーションのための表現学ベースのデータセットであるRaspberry PhenoSetを紹介した。
このデータセットには1,853枚の高解像度画像が含まれており、これは文学の中で最高品質であり、垂直農場で制御された人工照明の下で撮影された。
YOLOv8, YOLOv10, RT-DETR, Mask R-CNNなど,最先端のディープラーニングモデルをベンチマークして, データセットのパフォーマンスを総合的に評価した。
論文 参考訳(メタデータ) (2024-11-01T18:34:26Z) - Enhancing Fruit and Vegetable Detection in Unconstrained Environment with a Novel Dataset [4.498047714838568]
本稿では,実環境における果実や野菜の検出とローカライズのためのエンドツーエンドパイプラインを提案する。
我々はFRUVEG67というデータセットをキュレートした。このデータセットには、制約のないシナリオでキャプチャされた67種類の果物や野菜の画像が含まれている。
Fruit and Vegetable Detection Network (FVDNet) は3つの異なるグリッド構成を持つYOLOv7のアンサンブルバージョンである。
論文 参考訳(メタデータ) (2024-09-20T08:46:03Z) - Dual-band feature selection for maturity classification of specialty crops by hyperspectral imaging [5.905721043072562]
イチゴやトマトなどの特産作物の成熟度分類は、農業の下流における重要な活動である。
近年のDeep Learningの進歩は、成熟度分類のためのカラー画像の奨励的な結果を生み出している。
成熟度分類のための特徴抽出法を提案する。
論文 参考訳(メタデータ) (2024-05-16T10:01:16Z) - RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
本稿では,木構造メモリを用いてトラッカーと検出器を動的に関連付け,自己回復を可能にするRTrackerを提案する。
具体的には,正負と負のターゲットサンプルを時系列に保存し,維持する正負のツリー構造メモリを提案する。
我々の中核となる考え方は、正と負の目標カテゴリーの支持サンプルを用いて、目標損失の信頼性評価のための相対的距離に基づく基準を確立することである。
論文 参考訳(メタデータ) (2024-03-28T08:54:40Z) - Performance Evaluation of Semi-supervised Learning Frameworks for
Multi-Class Weed Detection [15.828967396019143]
効率的な雑草防除は、収穫量を最適化し、農産物の品質を高める上で重要な役割を担っている。
MLとDLによって実現された精密雑草管理の最近の進歩は、持続可能な代替手段となる。
半教師あり学習法、特に半教師あり学習法は、コンピュータビジョンの幅広い領域において注目を集めている。
論文 参考訳(メタデータ) (2024-03-06T00:59:51Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
我々は、ラベルの取得に最も有用なポイントクラウドを特定するために、新しいカーネル戦略を利用する。
1段目(SECOND)と2段目(SECOND)の両方に対応するため、アノテーションに選択した境界ボックスの総数と検出性能のトレードオフをよく組み込んだ分類エントロピー接点を組み込んだ。
その結果,ボックスレベルのアノテーションのコストは約44%,計算時間は26%削減された。
論文 参考訳(メタデータ) (2023-07-16T04:27:03Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - An Informative Tracking Benchmark [133.0931262969931]
既存のデータセットと新たに収集されたデータセットの1.2Mフレームのうち7%が、小型かつ情報的追跡ベンチマーク(ITB)である。
1) 課題レベル, 2) 識別力, 3) 外観変化の密度を考慮し, 既存のベンチマークから最も有意義なシーケンスを選択する。
同一データ上で再学習した15の最先端トラッカーの結果を解析することにより,各シナリオ下でのロバストなトラッカーの効果的な手法を決定できる。
論文 参考訳(メタデータ) (2021-12-13T07:56:16Z) - A fast accurate fine-grain object detection model based on YOLOv4 deep
neural network [0.0]
商業農場や果樹園における植物病の早期発見と予防は、精密農業技術の重要な特徴である。
本稿では,植物病の検出におけるいくつかの障害に対処する高性能なリアルタイム微粒物検出フレームワークを提案する。
提案するモデルは、You Only Look Once (YOLOv4)アルゴリズムの改良版に基づいて構築されている。
論文 参考訳(メタデータ) (2021-10-30T17:56:13Z) - Deep neural networks approach to microbial colony detection -- a
comparative analysis [52.77024349608834]
本稿では,AGARデータセットを用いた3つの深層学習手法の性能について検討する。
得られた結果は将来の実験のベンチマークとして機能するかもしれない。
論文 参考訳(メタデータ) (2021-08-23T12:06:00Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
畳み込みニューラルネットワーク(CNN)を用いた新しい深層学習手法を提案する。
高度に乾燥したプランテーション構成を考慮した植物を数えながら、同時にプランテーション・ロウを検出し、配置する。
提案手法は、異なる種類の作物のUAV画像において、植物と植物をカウントおよびジオロケートするための最先端の性能を達成した。
論文 参考訳(メタデータ) (2020-12-31T18:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。