InfoNorm: Mutual Information Shaping of Normals for Sparse-View Reconstruction
- URL: http://arxiv.org/abs/2407.12661v1
- Date: Wed, 17 Jul 2024 15:46:25 GMT
- Title: InfoNorm: Mutual Information Shaping of Normals for Sparse-View Reconstruction
- Authors: Xulong Wang, Siyan Dong, Youyi Zheng, Yanchao Yang,
- Abstract summary: 3D surface reconstruction from multi-view images is essential for scene understanding and interaction.
Recent implicit surface representations, such as Neural Radiance Fields (NeRFs) and signed distance functions (SDFs) employ various geometric priors to resolve the lack of observed information.
We propose regularizing the geometric modeling by explicitly encouraging the mutual information among surface normals of highly correlated scene points.
- Score: 15.900375207144759
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D surface reconstruction from multi-view images is essential for scene understanding and interaction. However, complex indoor scenes pose challenges such as ambiguity due to limited observations. Recent implicit surface representations, such as Neural Radiance Fields (NeRFs) and signed distance functions (SDFs), employ various geometric priors to resolve the lack of observed information. Nevertheless, their performance heavily depends on the quality of the pre-trained geometry estimation models. To ease such dependence, we propose regularizing the geometric modeling by explicitly encouraging the mutual information among surface normals of highly correlated scene points. In this way, the geometry learning process is modulated by the second-order correlations from noisy (first-order) geometric priors, thus eliminating the bias due to poor generalization. Additionally, we introduce a simple yet effective scheme that utilizes semantic and geometric features to identify correlated points, enhancing their mutual information accordingly. The proposed technique can serve as a plugin for SDF-based neural surface representations. Our experiments demonstrate the effectiveness of the proposed in improving the surface reconstruction quality of major states of the arts. Our code is available at: \url{https://github.com/Muliphein/InfoNorm}.
Related papers
- Geometry Distributions [51.4061133324376]
We propose a novel geometric data representation that models geometry as distributions.
Our approach uses diffusion models with a novel network architecture to learn surface point distributions.
We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity.
arXiv Detail & Related papers (2024-11-25T04:06:48Z) - Spurfies: Sparse Surface Reconstruction using Local Geometry Priors [8.260048622127913]
We introduce Spurfies, a novel method for sparse-view surface reconstruction.
It disentangles appearance and geometry information to utilize local geometry priors trained on synthetic data.
We validate our method on the DTU dataset and demonstrate that it outperforms previous state of the art by 35% in surface quality.
arXiv Detail & Related papers (2024-08-29T14:02:47Z) - ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
It is non-trivial to simultaneously recover meticulous geometry and preserve smoothness across regions with differing characteristics.
We propose ND-SDF, which learns a Normal Deflection field to represent the angular deviation between the scene normal and the prior normal.
Our method not only obtains smooth weakly textured regions such as walls and floors but also preserves the geometric details of complex structures.
arXiv Detail & Related papers (2024-08-22T17:59:01Z) - Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
We introduce the Flatten Anything Model (FAM), an unsupervised neural architecture to achieve global free-boundary surface parameterization.
Compared with previous methods, our FAM directly operates on discrete surface points without utilizing connectivity information.
Our FAM is fully-automated without the need for pre-cutting and can deal with highly-complex topologies.
arXiv Detail & Related papers (2024-05-23T14:39:52Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
We introduce a novel approach to learn geometries such as depth and surface normal from images while incorporating geometric context.
Our approach extracts geometric context that encodes the geometric variations present in the input image and correlates depth estimation with geometric constraints.
Our method unifies depth and surface normal estimations within a cohesive framework, which enables the generation of high-quality 3D geometry from images.
arXiv Detail & Related papers (2024-02-08T17:57:59Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
We propose a novel sparse view reconstruction framework that leverages on-surface priors to achieve highly faithful surface reconstruction.
Specifically, we design several constraints on global geometry alignment and local geometry refinement for jointly optimizing coarse shapes and fine details.
The experimental results with DTU and BlendedMVS datasets in two prevalent sparse settings demonstrate significant improvements over the state-of-the-art methods.
arXiv Detail & Related papers (2023-12-21T16:04:45Z) - Learning Signed Distance Field for Multi-view Surface Reconstruction [24.090786783370195]
We introduce a novel neural surface reconstruction framework that leverages the knowledge of stereo matching and feature consistency.
We apply a signed distance field (SDF) and a surface light field to represent the scene geometry and appearance respectively.
Our method is able to improve the robustness of geometry estimation and support reconstruction of complex scene topologies.
arXiv Detail & Related papers (2021-08-23T06:23:50Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDER is a novel photometric optimization method that recovers detailed facial geometry from a single image in an unsupervised manner.
In contrast to prior work, SIDER does not rely on any dataset priors and does not require additional supervision from multiple views, lighting changes or ground truth 3D shape.
arXiv Detail & Related papers (2021-08-11T22:34:53Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.