Spurfies: Sparse Surface Reconstruction using Local Geometry Priors
- URL: http://arxiv.org/abs/2408.16544v1
- Date: Thu, 29 Aug 2024 14:02:47 GMT
- Title: Spurfies: Sparse Surface Reconstruction using Local Geometry Priors
- Authors: Kevin Raj, Christopher Wewer, Raza Yunus, Eddy Ilg, Jan Eric Lenssen,
- Abstract summary: We introduce Spurfies, a novel method for sparse-view surface reconstruction.
It disentangles appearance and geometry information to utilize local geometry priors trained on synthetic data.
We validate our method on the DTU dataset and demonstrate that it outperforms previous state of the art by 35% in surface quality.
- Score: 8.260048622127913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Spurfies, a novel method for sparse-view surface reconstruction that disentangles appearance and geometry information to utilize local geometry priors trained on synthetic data. Recent research heavily focuses on 3D reconstruction using dense multi-view setups, typically requiring hundreds of images. However, these methods often struggle with few-view scenarios. Existing sparse-view reconstruction techniques often rely on multi-view stereo networks that need to learn joint priors for geometry and appearance from a large amount of data. In contrast, we introduce a neural point representation that disentangles geometry and appearance to train a local geometry prior using a subset of the synthetic ShapeNet dataset only. During inference, we utilize this surface prior as additional constraint for surface and appearance reconstruction from sparse input views via differentiable volume rendering, restricting the space of possible solutions. We validate the effectiveness of our method on the DTU dataset and demonstrate that it outperforms previous state of the art by 35% in surface quality while achieving competitive novel view synthesis quality. Moreover, in contrast to previous works, our method can be applied to larger, unbounded scenes, such as Mip-NeRF 360.
Related papers
- ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
It is non-trivial to simultaneously recover meticulous geometry and preserve smoothness across regions with differing characteristics.
We propose ND-SDF, which learns a Normal Deflection field to represent the angular deviation between the scene normal and the prior normal.
Our method not only obtains smooth weakly textured regions such as walls and floors but also preserves the geometric details of complex structures.
arXiv Detail & Related papers (2024-08-22T17:59:01Z) - InfoNorm: Mutual Information Shaping of Normals for Sparse-View Reconstruction [15.900375207144759]
3D surface reconstruction from multi-view images is essential for scene understanding and interaction.
Recent implicit surface representations, such as Neural Radiance Fields (NeRFs) and signed distance functions (SDFs) employ various geometric priors to resolve the lack of observed information.
We propose regularizing the geometric modeling by explicitly encouraging the mutual information among surface normals of highly correlated scene points.
arXiv Detail & Related papers (2024-07-17T15:46:25Z) - GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image [94.56927147492738]
We introduce GeoWizard, a new generative foundation model designed for estimating geometric attributes from single images.
We show that leveraging diffusion priors can markedly improve generalization, detail preservation, and efficiency in resource usage.
We propose a simple yet effective strategy to segregate the complex data distribution of various scenes into distinct sub-distributions.
arXiv Detail & Related papers (2024-03-18T17:50:41Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
We propose a novel sparse view reconstruction framework that leverages on-surface priors to achieve highly faithful surface reconstruction.
Specifically, we design several constraints on global geometry alignment and local geometry refinement for jointly optimizing coarse shapes and fine details.
The experimental results with DTU and BlendedMVS datasets in two prevalent sparse settings demonstrate significant improvements over the state-of-the-art methods.
arXiv Detail & Related papers (2023-12-21T16:04:45Z) - DiViNeT: 3D Reconstruction from Disparate Views via Neural Template
Regularization [7.488962492863031]
We present a volume rendering-based neural surface reconstruction method that takes as few as three disparate RGB images as input.
Our key idea is to regularize the reconstruction, which is severely ill-posed and leaving significant gaps between the sparse views.
Our approach achieves the best reconstruction quality among existing methods in the presence of such sparse views.
arXiv Detail & Related papers (2023-06-07T18:05:14Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - Facial Geometric Detail Recovery via Implicit Representation [147.07961322377685]
We present a robust texture-guided geometric detail recovery approach using only a single in-the-wild facial image.
Our method combines high-quality texture completion with the powerful expressiveness of implicit surfaces.
Our method not only recovers accurate facial details but also decomposes normals, albedos, and shading parts in a self-supervised way.
arXiv Detail & Related papers (2022-03-18T01:42:59Z) - Learning Signed Distance Field for Multi-view Surface Reconstruction [24.090786783370195]
We introduce a novel neural surface reconstruction framework that leverages the knowledge of stereo matching and feature consistency.
We apply a signed distance field (SDF) and a surface light field to represent the scene geometry and appearance respectively.
Our method is able to improve the robustness of geometry estimation and support reconstruction of complex scene topologies.
arXiv Detail & Related papers (2021-08-23T06:23:50Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDER is a novel photometric optimization method that recovers detailed facial geometry from a single image in an unsupervised manner.
In contrast to prior work, SIDER does not rely on any dataset priors and does not require additional supervision from multiple views, lighting changes or ground truth 3D shape.
arXiv Detail & Related papers (2021-08-11T22:34:53Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.