AutoFlow: Automated Workflow Generation for Large Language Model Agents
- URL: http://arxiv.org/abs/2407.12821v1
- Date: Mon, 1 Jul 2024 21:05:02 GMT
- Title: AutoFlow: Automated Workflow Generation for Large Language Model Agents
- Authors: Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, Yongfeng Zhang,
- Abstract summary: Large Language Models (LLMs) have shown significant progress in understanding complex natural language.
To make sure LLM Agents follow an effective and reliable procedure to solve the given task, manually designed are usually used.
We propose AutoFlow, a framework designed to automatically generate for agents to solve complex tasks.
- Score: 39.72700864347576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have shown significant progress in understanding complex natural language. One important application of LLM is LLM-based AI Agent, which leverages the ability of LLM as well as external tools for complex-task solving. To make sure LLM Agents follow an effective and reliable procedure to solve the given task, manually designed workflows are usually used to guide the working mechanism of agents. However, manually designing the workflows requires considerable efforts and domain knowledge, making it difficult to develop and deploy agents on massive scales. To address these issues, we propose AutoFlow, a framework designed to automatically generate workflows for agents to solve complex tasks. AutoFlow takes natural language program as the format of agent workflow and employs a workflow optimization procedure to iteratively optimize the workflow quality. Besides, this work offers two workflow generation methods: fine-tuning-based and in-context-based methods, making the AutoFlow framework applicable to both open-source and closed-source LLMs. Experimental results show that our framework can produce robust and reliable agent workflows. We believe that the automatic generation and interpretation of workflows in natural language represent a promising paradigm for solving complex tasks, particularly with the rapid development of LLMs. The source code of this work is available at https://github.com/agiresearch/AutoFlow.
Related papers
- FlowAgent: Achieving Compliance and Flexibility for Workflow Agents [31.088578094151178]
FlowAgent is a novel agent framework designed to maintain both compliance and flexibility.
Building on PDL, we develop a comprehensive framework that empowers LLMs to manage OOW queries effectively.
We present a new evaluation methodology to rigorously assess an LLM agent's ability to handle OOW scenarios.
arXiv Detail & Related papers (2025-02-20T07:59:31Z) - LLM-AutoDiff: Auto-Differentiate Any LLM Workflow [58.56731133392544]
We introduce LLM-AutoDiff: a novel framework for Automatic Prompt Engineering (APE)
LLMs-AutoDiff treats each textual input as a trainable parameter and uses a frozen backward engine to generate feedback-akin to textual gradients.
It consistently outperforms existing textual gradient baselines in both accuracy and training cost.
arXiv Detail & Related papers (2025-01-28T03:18:48Z) - Flow: A Modular Approach to Automated Agentic Workflow Generation [53.073598156915615]
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution.
However, the effective adjustment of Agentic during execution has not been well-studied.
arXiv Detail & Related papers (2025-01-14T04:35:37Z) - Large Language Models for Constructing and Optimizing Machine Learning Workflows: A Survey [4.917456871628609]
Building effective machine learning (ML) to address complex tasks is a primary focus of the Automatic ML (AutoML) community.
Recently, the integration of Large Language Models (LLMs) into ML has shown great potential for automating and enhancing various stages of the ML pipeline.
arXiv Detail & Related papers (2024-11-11T21:54:26Z) - WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models [105.46456444315693]
We presentLLM, a data-centric framework to enhance the capability of large language models in workflow orchestration.
It first constructs a large-scale fine-tuningBench with 106,763 samples, covering 1,503 APIs from 83 applications across 28 categories.
LlamaLlama demonstrates a strong capacity to orchestrate complex APIs, while also achieving notable generalization performance.
arXiv Detail & Related papers (2024-11-08T09:58:02Z) - AFlow: Automating Agentic Workflow Generation [36.61172223528231]
Large language models (LLMs) have demonstrated remarkable potential in solving complex tasks across diverse domains.
We introduce AFlow, an automated framework that efficiently explores this space using Monte Carlo Tree Search.
Empirical evaluations across six benchmark datasets demonstrate AFlow's efficacy, yielding a 5.7% average improvement over state-of-the-art baselines.
arXiv Detail & Related papers (2024-10-14T17:40:40Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - Couler: Unified Machine Learning Workflow Optimization in Cloud [6.769259207650922]
Couler is a system designed for unified ML workflow optimization in the cloud.
We integrate Large Language Models (LLMs) into workflow generation, and provide a unified programming interface for various workflow engines.
Couer has successfully improved the CPU/Memory utilization by more than 15% and the workflow completion rate by around 17%.
arXiv Detail & Related papers (2024-03-12T12:47:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.