FlowAgent: Achieving Compliance and Flexibility for Workflow Agents
- URL: http://arxiv.org/abs/2502.14345v1
- Date: Thu, 20 Feb 2025 07:59:31 GMT
- Title: FlowAgent: Achieving Compliance and Flexibility for Workflow Agents
- Authors: Yuchen Shi, Siqi Cai, Zihan Xu, Yuei Qin, Gang Li, Hang Shao, Jiawei Chen, Deqing Yang, Ke Li, Xing Sun,
- Abstract summary: FlowAgent is a novel agent framework designed to maintain both compliance and flexibility.
Building on PDL, we develop a comprehensive framework that empowers LLMs to manage OOW queries effectively.
We present a new evaluation methodology to rigorously assess an LLM agent's ability to handle OOW scenarios.
- Score: 31.088578094151178
- License:
- Abstract: The integration of workflows with large language models (LLMs) enables LLM-based agents to execute predefined procedures, enhancing automation in real-world applications. Traditional rule-based methods tend to limit the inherent flexibility of LLMs, as their predefined execution paths restrict the models' action space, particularly when the unexpected, out-of-workflow (OOW) queries are encountered. Conversely, prompt-based methods allow LLMs to fully control the flow, which can lead to diminished enforcement of procedural compliance. To address these challenges, we introduce FlowAgent, a novel agent framework designed to maintain both compliance and flexibility. We propose the Procedure Description Language (PDL), which combines the adaptability of natural language with the precision of code to formulate workflows. Building on PDL, we develop a comprehensive framework that empowers LLMs to manage OOW queries effectively, while keeping the execution path under the supervision of a set of controllers. Additionally, we present a new evaluation methodology to rigorously assess an LLM agent's ability to handle OOW scenarios, going beyond routine flow compliance tested in existing benchmarks. Experiments on three datasets demonstrate that FlowAgent not only adheres to workflows but also effectively manages OOW queries, highlighting its dual strengths in compliance and flexibility. The code is available at https://github.com/Lightblues/FlowAgent.
Related papers
- LLM-AutoDiff: Auto-Differentiate Any LLM Workflow [58.56731133392544]
We introduce LLM-AutoDiff: a novel framework for Automatic Prompt Engineering (APE)
LLMs-AutoDiff treats each textual input as a trainable parameter and uses a frozen backward engine to generate feedback-akin to textual gradients.
It consistently outperforms existing textual gradient baselines in both accuracy and training cost.
arXiv Detail & Related papers (2025-01-28T03:18:48Z) - Flow: A Modular Approach to Automated Agentic Workflow Generation [53.073598156915615]
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution.
However, the effective adjustment of Agentic during execution has not been well-studied.
arXiv Detail & Related papers (2025-01-14T04:35:37Z) - DynaSaur: Large Language Agents Beyond Predefined Actions [108.75187263724838]
Existing LLM agent systems typically select actions from a fixed and predefined set at every step.
We propose an LLM agent framework that enables the dynamic creation and composition of actions in an online manner.
Our experiments on the GAIA benchmark demonstrate that this framework offers significantly greater flexibility and outperforms previous methods.
arXiv Detail & Related papers (2024-11-04T02:08:59Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control.
We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
arXiv Detail & Related papers (2024-10-07T23:38:58Z) - AutoFlow: Automated Workflow Generation for Large Language Model Agents [39.72700864347576]
Large Language Models (LLMs) have shown significant progress in understanding complex natural language.
To make sure LLM Agents follow an effective and reliable procedure to solve the given task, manually designed are usually used.
We propose AutoFlow, a framework designed to automatically generate for agents to solve complex tasks.
arXiv Detail & Related papers (2024-07-01T21:05:02Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - FlowMind: Automatic Workflow Generation with LLMs [12.848562107014093]
This paper introduces a novel approach, FlowMind, leveraging the capabilities of Large Language Models (LLMs)
We propose a generic prompt recipe for a lecture that helps ground LLM reasoning with reliable Application Programming Interfaces (APIs)
We also introduce NCEN-QA, a new dataset in finance for benchmarking question-answering tasks from N-CEN reports on funds.
arXiv Detail & Related papers (2024-03-17T00:36:37Z) - Formal-LLM: Integrating Formal Language and Natural Language for Controllable LLM-based Agents [39.53593677934238]
Large Language Models (LLMs) enable AI Agents to automatically generate and execute multi-step plans to solve complex tasks.
However, current LLM-based agents frequently generate invalid or non-executable plans.
This paper proposes a novel "Formal-LLM" framework for LLM-based agents by integrating the expressiveness of natural language and the precision of formal language.
arXiv Detail & Related papers (2024-02-01T17:30:50Z) - Formally Specifying the High-Level Behavior of LLM-Based Agents [24.645319505305316]
LLMs have emerged as promising tools for solving challenging problems without the need for task-specific finetuned models.
Currently, the design and implementation of such agents is ad hoc, as the wide variety of tasks that LLM-based agents may be applied to naturally means there can be no one-size-fits-all approach to agent design.
We propose a minimalistic generation framework that simplifies the process of building agents.
arXiv Detail & Related papers (2023-10-12T17:24:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.