Cross-Modal Augmentation for Few-Shot Multimodal Fake News Detection
- URL: http://arxiv.org/abs/2407.12880v1
- Date: Tue, 16 Jul 2024 09:32:11 GMT
- Title: Cross-Modal Augmentation for Few-Shot Multimodal Fake News Detection
- Authors: Ye Jiang, Taihang Wang, Xiaoman Xu, Yimin Wang, Xingyi Song, Diana Maynard,
- Abstract summary: Few-shot learning is critical for detecting fake news in its early stages.
This paper presents a multimodal fake news detection model which augments multimodal features using unimodal features.
The proposed CMA achieves SOTA results over three benchmark datasets.
- Score: 0.21990652930491858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The nascent topic of fake news requires automatic detection methods to quickly learn from limited annotated samples. Therefore, the capacity to rapidly acquire proficiency in a new task with limited guidance, also known as few-shot learning, is critical for detecting fake news in its early stages. Existing approaches either involve fine-tuning pre-trained language models which come with a large number of parameters, or training a complex neural network from scratch with large-scale annotated datasets. This paper presents a multimodal fake news detection model which augments multimodal features using unimodal features. For this purpose, we introduce Cross-Modal Augmentation (CMA), a simple approach for enhancing few-shot multimodal fake news detection by transforming n-shot classification into a more robust (n $\times$ z)-shot problem, where z represents the number of supplementary features. The proposed CMA achieves SOTA results over three benchmark datasets, utilizing a surprisingly simple linear probing method to classify multimodal fake news with only a few training samples. Furthermore, our method is significantly more lightweight than prior approaches, particularly in terms of the number of trainable parameters and epoch times. The code is available here: \url{https://github.com/zgjiangtoby/FND_fewshot}
Related papers
- A Multimodal Adaptive Graph-based Intelligent Classification Model for Fake News [1.537737222790121]
We introduce the Multimodal Adaptive Graph-based Intelligent Classification (aptly referred to as MAGIC) for fake news detection.
A comprehensive information interaction graph was built using the adaptive Graph Attention Network before classifying the multimodal input through the Softmax function.
MAGIC was trained and tested on two fake news datasets, that is, Fakeddit (English) and Multimodal Fake News Detection (Chinese), with the model achieving an accuracy of 98.8% and 86.3%, respectively.
arXiv Detail & Related papers (2024-11-09T07:19:19Z) - Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control [66.78146440275093]
Learned retrieval (LSR) is a family of neural methods that encode queries and documents into sparse lexical vectors.
We explore the application of LSR to the multi-modal domain, with a focus on text-image retrieval.
Current approaches like LexLIP and STAIR require complex multi-step training on massive datasets.
Our proposed approach efficiently transforms dense vectors from a frozen dense model into sparse lexical vectors.
arXiv Detail & Related papers (2024-02-27T14:21:56Z) - Similarity-Aware Multimodal Prompt Learning for Fake News Detection [0.12396474483677114]
multimodal fake news detection has outperformed text-only methods.
This paper proposes a Similarity-Aware Multimodal Prompt Learning (SAMPLE) framework.
For evaluation, SAMPLE surpasses the F1 and the accuracies of previous works on two benchmark multimodal datasets.
arXiv Detail & Related papers (2023-04-09T08:10:05Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
This work offers a novel unsupervised pre-training solution for low-data regimes.
Inspired by the recent success of the Prompting technique, we introduce a new pre-training method that boosts QEIS models.
Experimental results show that our method significantly boosts several QEIS models on three datasets.
arXiv Detail & Related papers (2023-02-02T15:49:03Z) - Multimodal Fake News Detection via CLIP-Guided Learning [26.093561485807832]
This paper proposes a FND-CLIP framework, i.e., a multimodal Fake News Detection network based on Contrastive Language-Image Pretraining (CLIP)
Given a targeted multimodal news, we extract the deep representations from the image and text using a ResNet-based encoder, a BERT-based encoder and two pair-wise CLIP encoders.
The multimodal feature is a concatenation of the CLIP-generated features weighted by the standardized cross-modal similarity of the two modalities.
arXiv Detail & Related papers (2022-05-28T02:43:18Z) - Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain,
Active and Continual Few-Shot Learning [41.07029317930986]
We propose a variance-sensitive class of models that operates in a low-label regime.
The first method, Simple CNAPS, employs a hierarchically regularized Mahalanobis-distance based classifier.
We further extend this approach to a transductive learning setting, proposing Transductive CNAPS.
arXiv Detail & Related papers (2022-01-13T18:59:02Z) - Few-shot Weakly-Supervised Object Detection via Directional Statistics [55.97230224399744]
We propose a probabilistic multiple instance learning approach for few-shot Common Object Localization (COL) and few-shot Weakly Supervised Object Detection (WSOD)
Our model simultaneously learns the distribution of the novel objects and localizes them via expectation-maximization steps.
Our experiments show that the proposed method, despite being simple, outperforms strong baselines in few-shot COL and WSOD, as well as large-scale WSOD tasks.
arXiv Detail & Related papers (2021-03-25T22:34:16Z) - Discriminative Nearest Neighbor Few-Shot Intent Detection by
Transferring Natural Language Inference [150.07326223077405]
Few-shot learning is attracting much attention to mitigate data scarcity.
We present a discriminative nearest neighbor classification with deep self-attention.
We propose to boost the discriminative ability by transferring a natural language inference (NLI) model.
arXiv Detail & Related papers (2020-10-25T00:39:32Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot object detection (FSOD) helps detectors adapt to unseen classes with few training instances.
We propose a Multi-scale Positive Sample Refinement (MPSR) approach to enrich object scales in FSOD.
MPSR generates multi-scale positive samples as object pyramids and refines the prediction at various scales.
arXiv Detail & Related papers (2020-07-18T09:48:29Z) - Frustratingly Simple Few-Shot Object Detection [98.42824677627581]
We find that fine-tuning only the last layer of existing detectors on rare classes is crucial to the few-shot object detection task.
Such a simple approach outperforms the meta-learning methods by roughly 220 points on current benchmarks.
arXiv Detail & Related papers (2020-03-16T00:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.