A Multimodal Adaptive Graph-based Intelligent Classification Model for Fake News
- URL: http://arxiv.org/abs/2411.06097v2
- Date: Mon, 18 Nov 2024 18:19:34 GMT
- Title: A Multimodal Adaptive Graph-based Intelligent Classification Model for Fake News
- Authors: Jun-hao, Xu,
- Abstract summary: We introduce the Multimodal Adaptive Graph-based Intelligent Classification (aptly referred to as MAGIC) for fake news detection.
A comprehensive information interaction graph was built using the adaptive Graph Attention Network before classifying the multimodal input through the Softmax function.
MAGIC was trained and tested on two fake news datasets, that is, Fakeddit (English) and Multimodal Fake News Detection (Chinese), with the model achieving an accuracy of 98.8% and 86.3%, respectively.
- Score: 1.537737222790121
- License:
- Abstract: Numerous studies have been proposed to detect fake news focusing on multi-modalities based on machine and/or deep learning. However, studies focusing on graph-based structures using geometric deep learning are lacking. To address this challenge, we introduce the Multimodal Adaptive Graph-based Intelligent Classification (aptly referred to as MAGIC) for fake news detection. Specifically, the Encoder Representations from Transformers was used for text vectorization whilst ResNet50 was used for images. A comprehensive information interaction graph was built using the adaptive Graph Attention Network before classifying the multimodal input through the Softmax function. MAGIC was trained and tested on two fake news datasets, that is, Fakeddit (English) and Multimodal Fake News Detection (Chinese), with the model achieving an accuracy of 98.8\% and 86.3\%, respectively. Ablation experiments also revealed MAGIC to yield superior performance across both the datasets. Findings show that a graph-based deep learning adaptive model is effective in detecting multimodal fake news, surpassing state-of-the-art methods.
Related papers
- Cross-Modal Augmentation for Few-Shot Multimodal Fake News Detection [0.21990652930491858]
Few-shot learning is critical for detecting fake news in its early stages.
This paper presents a multimodal fake news detection model which augments multimodal features using unimodal features.
The proposed CMA achieves SOTA results over three benchmark datasets.
arXiv Detail & Related papers (2024-07-16T09:32:11Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations.
We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models.
The dataset and benchmarks will be released to support further research.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
Graph neural networks (GNNs) have found widespread application in modeling graph data across diverse domains.
Recent studies have explored graph OOD detection, often focusing on training a specific model or modifying the data on top of a well-trained GNN.
This paper introduces a data-centric, unsupervised, and plug-and-play solution that operates independently of training data and modifications of GNN architecture.
arXiv Detail & Related papers (2024-01-10T08:37:39Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Cross-modal Contrastive Learning for Multimodal Fake News Detection [10.760000041969139]
COOLANT is a cross-modal contrastive learning framework for multimodal fake news detection.
A cross-modal fusion module is developed to learn the cross-modality correlations.
An attention guidance module is implemented to help effectively and interpretably aggregate the aligned unimodal representations.
arXiv Detail & Related papers (2023-02-25T10:12:34Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Multimodal Fake News Detection with Adaptive Unimodal Representation
Aggregation [28.564442206829625]
AURA is a multimodal fake news detection network with adaptive unimodal representation aggregation.
We perform coarse-level fake news detection and cross-modal cosistency learning according to the unimodal and multimodal representations.
Experiments on Weibo and Gossipcop prove that AURA can successfully beat several state-of-the-art FND schemes.
arXiv Detail & Related papers (2022-06-12T14:06:55Z) - Multimodal Fake News Detection via CLIP-Guided Learning [26.093561485807832]
This paper proposes a FND-CLIP framework, i.e., a multimodal Fake News Detection network based on Contrastive Language-Image Pretraining (CLIP)
Given a targeted multimodal news, we extract the deep representations from the image and text using a ResNet-based encoder, a BERT-based encoder and two pair-wise CLIP encoders.
The multimodal feature is a concatenation of the CLIP-generated features weighted by the standardized cross-modal similarity of the two modalities.
arXiv Detail & Related papers (2022-05-28T02:43:18Z) - Transformer-based Language Model Fine-tuning Methods for COVID-19 Fake
News Detection [7.29381091750894]
We propose a novel transformer-based language model fine-tuning approach for these fake news detection.
First, the token vocabulary of individual model is expanded for the actual semantics of professional phrases.
Last, the predicted features extracted by universal language model RoBERTa and domain-specific model CT-BERT are fused by one multiple layer perception to integrate fine-grained and high-level specific representations.
arXiv Detail & Related papers (2021-01-14T09:05:42Z) - A Novel Graph-based Multi-modal Fusion Encoder for Neural Machine
Translation [131.33610549540043]
We propose a novel graph-based multi-modal fusion encoder for NMT.
We first represent the input sentence and image using a unified multi-modal graph.
We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations.
arXiv Detail & Related papers (2020-07-17T04:06:09Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.