SurroFlow: A Flow-Based Surrogate Model for Parameter Space Exploration and Uncertainty Quantification
- URL: http://arxiv.org/abs/2407.12884v1
- Date: Tue, 16 Jul 2024 19:08:49 GMT
- Title: SurroFlow: A Flow-Based Surrogate Model for Parameter Space Exploration and Uncertainty Quantification
- Authors: Jingyi Shen, Yuhan Duan, Han-Wei Shen,
- Abstract summary: Existing deep learning-based surrogate models facilitate efficient data generation, but fall short in uncertainty quantification, efficient parameter space exploration, and reverse prediction.
We introduce SurroFlow, a novel normalizing flow-based surrogate model, to learn the invertible transformation between simulation parameters and simulation outputs.
Our framework significantly reduces the computational costs while enhancing the reliability and exploration capabilities of scientific surrogate models.
- Score: 17.175947741031674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing deep learning-based surrogate models facilitate efficient data generation, but fall short in uncertainty quantification, efficient parameter space exploration, and reverse prediction. In our work, we introduce SurroFlow, a novel normalizing flow-based surrogate model, to learn the invertible transformation between simulation parameters and simulation outputs. The model not only allows accurate predictions of simulation outcomes for a given simulation parameter but also supports uncertainty quantification in the data generation process. Additionally, it enables efficient simulation parameter recommendation and exploration. We integrate SurroFlow and a genetic algorithm as the backend of a visual interface to support effective user-guided ensemble simulation exploration and visualization. Our framework significantly reduces the computational costs while enhancing the reliability and exploration capabilities of scientific surrogate models.
Related papers
- Embed and Emulate: Contrastive representations for simulation-based inference [11.543221890134399]
This paper introduces Embed and Emulate (E&E), a new simulation-based inference ( SBI) method based on contrastive learning.
E&E learns a low-dimensional latent embedding of the data and a corresponding fast emulator in the latent space.
We demonstrate superior performance over existing methods in a realistic, non-identifiable parameter estimation task.
arXiv Detail & Related papers (2024-09-27T02:37:01Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - Bayesian Adaptive Calibration and Optimal Design [16.821341360894706]
Current machine learning approaches mostly rely on rerunning simulations over a fixed set of designs available in the observed data.
We propose a data-efficient algorithm to run maximally informative simulations within a batch-sequential process.
We show the benefits of our method when compared to related approaches across synthetic and real-data problems.
arXiv Detail & Related papers (2024-05-23T11:14:35Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - GNN-Surrogate: A Hierarchical and Adaptive Graph Neural Network for
Parameter Space Exploration of Unstructured-Mesh Ocean Simulations [8.851780016570311]
We propose a graph neural network-based surrogate model to explore the parameter space of ocean climate simulations.
GNN-Surrogate predicts the output field with given simulation parameters.
We give evaluations on the MPAS-Ocean simulation to demonstrate the effectiveness and efficiency of GNN-Surrogate.
arXiv Detail & Related papers (2022-02-18T01:51:09Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - DISCO: Double Likelihood-free Inference Stochastic Control [29.84276469617019]
We propose to leverage the power of modern simulators and recent techniques in Bayesian statistics for likelihood-free inference.
The posterior distribution over simulation parameters is propagated through a potentially non-analytical model of the system.
Experiments show that the controller proposed attained superior performance and robustness on classical control and robotics tasks.
arXiv Detail & Related papers (2020-02-18T05:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.