Tomography of parametrized quantum states
- URL: http://arxiv.org/abs/2407.12916v1
- Date: Wed, 17 Jul 2024 18:00:04 GMT
- Title: Tomography of parametrized quantum states
- Authors: Franz J. Schreiber, Jens Eisert, Johannes Jakob Meyer,
- Abstract summary: We introduce a framework that unifies different notions of tomography and use it to establish a natural figure of merit for tomography of parametrized quantum states.
We provide an explicit algorithm that combines signal processing techniques with a tomography scheme to recover an approximation to the parametrized quantum state.
In an analogous fashion, we derive a figure of merit that applies to parametrized quantum channels.
- Score: 0.3277163122167433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Characterizing quantum systems is a fundamental task that enables the development of quantum technologies. Various approaches, ranging from full tomography to instances of classical shadows, have been proposed to this end. However, quantum states that are being prepared in practice often involve families of quantum states characterized by continuous parameters, such as the time evolution of a quantum state. In this work, we extend the foundations of quantum state tomography to parametrized quantum states. We introduce a framework that unifies different notions of tomography and use it to establish a natural figure of merit for tomography of parametrized quantum states. Building on this, we provide an explicit algorithm that combines signal processing techniques with a tomography scheme to recover an approximation to the parametrized quantum state equipped with explicit guarantees. Our algorithm uses techniques from compressed sensing to exploit structure in the parameter dependence and operates with a plug and play nature, using the underlying tomography scheme as a black box. In an analogous fashion, we derive a figure of merit that applies to parametrized quantum channels. Substituting the state tomography scheme with a scheme for process tomography in our algorithm, we then obtain a protocol for tomography of parametrized quantum channels. We showcase our algorithm with two examples of shadow tomography of states time-evolved under an NMR Hamiltonian and a free fermionic Hamiltonian.
Related papers
- Reliable confidence regions for quantum tomography using distribution moments [0.0]
We suggest a computationally efficient and reliable scheme for determining well-justified error bars for quantum tomography.
We benchmark our approach for a number of quantum tomography protocols using both simulation and demonstration with the use of a cloud-accessible quantum processor.
arXiv Detail & Related papers (2023-07-24T14:21:35Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Shadow process tomography of quantum channels [0.6554326244334866]
Quantum process tomography is a critical capability for building quantum computers, enabling quantum networks, and understanding quantum sensors.
The recent field of shadow tomography, applied to quantum states, has demonstrated the ability to extract key information about a state with onlyly many measurements.
We make use of Choi isomorphism to directly apply rigorous bounds from shadow state tomography to shadow process tomography, and we find additional bounds on the number of measurements that are unique to process tomography.
arXiv Detail & Related papers (2021-10-07T17:16:41Z) - Variational quantum process tomography [12.843681115589122]
We put forward a quantum machine learning algorithm which encodes the unknown unitary quantum process into a relatively shallow depth parametric quantum circuit.
Results show that those quantum processes could be reconstructed with high fidelity, while the number of input states required are at least $2$ orders of magnitude less than required by the standard quantum process tomography.
arXiv Detail & Related papers (2021-08-05T03:36:26Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Learning Temporal Quantum Tomography [0.0]
Quantifying and verifying the control level in preparing a quantum state are central challenges in building quantum devices.
We develop a practical and approximate tomography method using a recurrent machine learning framework.
We demonstrate our algorithms for quantum learning tasks followed by the proposal of a quantum short-term memory capacity to evaluate the temporal processing ability of near-term quantum devices.
arXiv Detail & Related papers (2021-03-25T17:01:24Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Fast and robust quantum state tomography from few basis measurements [65.36803384844723]
We present an online tomography algorithm designed to optimize all the aforementioned resources at the cost of a worse dependence on accuracy.
The protocol is the first to give provably optimal performance in terms of rank and dimension for state copies, measurement settings and memory.
Further improvements are possible by executing the algorithm on a quantum computer, giving a quantum speedup for quantum state tomography.
arXiv Detail & Related papers (2020-09-17T11:28:41Z) - Reconstructing quantum states with quantum reservoir networks [4.724825031148412]
We introduce a quantum state tomography platform based on the framework of reservoir computing.
It forms a quantum neural network, and operates as a comprehensive device for reconstructing an arbitrary quantum state.
arXiv Detail & Related papers (2020-08-14T14:01:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.