Probing Topological Spin Liquids on a Programmable Quantum Simulator
- URL: http://arxiv.org/abs/2104.04119v1
- Date: Fri, 9 Apr 2021 00:18:12 GMT
- Title: Probing Topological Spin Liquids on a Programmable Quantum Simulator
- Authors: Giulia Semeghini, Harry Levine, Alexander Keesling, Sepehr Ebadi, Tout
T. Wang, Dolev Bluvstein, Ruben Verresen, Hannes Pichler, Marcin Kalinowski,
Rhine Samajdar, Ahmed Omran, Subir Sachdev, Ashvin Vishwanath, Markus
Greiner, Vladan Vuletic, Mikhail D. Lukin
- Abstract summary: We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
- Score: 40.96261204117952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum spin liquids, exotic phases of matter with topological order, have
been a major focus of explorations in physical science for the past several
decades. Such phases feature long-range quantum entanglement that can
potentially be exploited to realize robust quantum computation. We use a
219-atom programmable quantum simulator to probe quantum spin liquid states. In
our approach, arrays of atoms are placed on the links of a kagome lattice and
evolution under Rydberg blockade creates frustrated quantum states with no
local order. The onset of a quantum spin liquid phase of the paradigmatic toric
code type is detected by evaluating topological string operators that provide
direct signatures of topological order and quantum correlations. Its properties
are further revealed by using an atom array with nontrivial topology,
representing a first step towards topological encoding. Our observations enable
the controlled experimental exploration of topological quantum matter and
protected quantum information processing.
Related papers
- Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
We report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator.
Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics.
arXiv Detail & Related papers (2024-10-20T13:27:13Z) - Direct Probe of Topology and Geometry of Quantum States on IBM Q [2.7801206308522417]
We show that a density matrix form of the quantum geometric tensor (QGT) can be explicitly re-constructed from Pauli operator measurements on a quantum circuit.
We propose two algorithms, suitable for IBM quantum computers, to directly probe QGT.
Explicit results obtained from IBM Q a Chern insulator model are presented and analysed.
arXiv Detail & Related papers (2024-03-21T09:18:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Realizing topologically ordered states on a quantum processor [0.0845004185087851]
Topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems.
We prepare the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor.
arXiv Detail & Related papers (2021-04-02T18:00:01Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.