論文の概要: Textualized and Feature-based Models for Compound Multimodal Emotion Recognition in the Wild
- arxiv url: http://arxiv.org/abs/2407.12927v2
- Date: Thu, 1 Aug 2024 13:51:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-02 13:35:28.483809
- Title: Textualized and Feature-based Models for Compound Multimodal Emotion Recognition in the Wild
- Title(参考訳): 野生における複合マルチモーダル感情認識のためのテキスト化モデルと特徴ベースモデル
- Authors: Nicolas Richet, Soufiane Belharbi, Haseeb Aslam, Meike Emilie Schadt, Manuela González-González, Gustave Cortal, Alessandro Lameiras Koerich, Marco Pedersoli, Alain Finkel, Simon Bacon, Eric Granger,
- Abstract要約: マルチモーダルな大言語モデル(LLM)は、異なる非テクストのモダリティからテキストに変換される可能性のある明示的な非言語的手がかりに依存している。
本稿では,ビデオにおける複合マルチモーダルERのテキストと特徴に基づくアプローチの可能性について比較する。
- 参考スコア(独自算出の注目度): 45.29814349246784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Systems for multimodal emotion recognition (ER) are commonly trained to extract features from different modalities (e.g., visual, audio, and textual) that are combined to predict individual basic emotions. However, compound emotions often occur in real-world scenarios, and the uncertainty of recognizing such complex emotions over diverse modalities is challenging for feature-based models As an alternative, emerging multimodal large language models (LLMs) like BERT and LLaMA rely on explicit non-verbal cues that may be translated from different non-textual modalities (e.g., audio and visual) into text. Textualization of modalities augments data with emotional cues to help the LLM encode the interconnections between all modalities in a shared text space. In such text-based models, prior knowledge of ER tasks is leveraged to textualize relevant nonverbal cues such as audio tone from vocal expressions, and action unit intensity from facial expressions. Since the pre-trained weights are publicly available for many LLMs, training on large-scale datasets is unnecessary, allowing fine-tuning for downstream tasks such as compound ER (CER). This paper compares the potential of text- and feature-based approaches for compound multimodal ER in videos. Experiments were conducted on the challenging C-EXPR-DB dataset in the wild for CER, and contrasted with results on the MELD dataset for basic ER. Our results indicate that multimodal textualization provides lower accuracy than feature-based models on C-EXPR-DB, where text transcripts are captured in the wild. However, higher accuracy can be achieved when the video data has rich transcripts. Our code is available.
- Abstract(参考訳): マルチモーダル感情認識(ER)システムは、個々の基本的な感情を予測するために組み合わされた様々なモーダル(例えば、視覚、音声、テキスト)から特徴を抽出するために一般的に訓練されている。
しかし、複合的な感情は現実世界のシナリオでしばしば発生し、多様なモダリティよりも複雑な感情を認識するという不確実性は、特徴ベースのモデルでは困難である。
モダリティのテクスト化は、LLMが共有テキスト空間内のすべてのモダリティ間の相互接続を符号化するのを助けるために、感情的な手がかりでデータを増大させる。
このようなテキストベースモデルでは、ERタスクの事前知識を利用して、音声表現からの音声トーンや表情からのアクション単位強度といった、関連する非言語的手がかりをテキスト化する。
事前訓練された重量は、多くのLLMで利用可能であるため、大規模なデータセットのトレーニングは不要であり、複合ER(CER)のような下流タスクの微調整を可能にする。
本稿では,ビデオにおける複合マルチモーダルERのテキストと特徴に基づくアプローチの可能性について比較する。
CERのための挑戦的なC-EXPR-DBデータセットの実験を行い、基礎ERのためのMELDデータセットの結果と比較した。
以上の結果から,C-EXPR-DBにおける特徴ベースモデルよりもマルチモーダルテクスチャライゼーションの精度が低いことが示唆された。
しかし、ビデオデータにリッチな書き起こしがある場合、高い精度が得られる。
私たちのコードは利用可能です。
関連論文リスト
- AMPLE: Emotion-Aware Multimodal Fusion Prompt Learning for Fake News Detection [0.1499944454332829]
本稿では,Emotion-textbfAware textbfMultimodal Fusion textbfPrompt textbfLtextbfEarning (textbfAMPLE) フレームワークについて述べる。
このフレームワークは感情分析ツールを利用してテキストから感情要素を抽出する。
次に、マルチヘッドクロスアテンション(MCA)機構と類似性を考慮した融合手法を用いて、マルチモーダルデータを統合する。
論文 参考訳(メタデータ) (2024-10-21T02:19:24Z) - OmniBench: Towards The Future of Universal Omni-Language Models [63.16606414452612]
OmniBenchは、視覚的、音響的、テキスト的入力を同時に認識し、解釈し、推論するモデルの能力を厳格に評価するために設計された新しいベンチマークである。
本研究の主目的は,ほとんどのOLMが3モーダル文脈における指示追従能力と推論能力に限界があることである。
このギャップに対処するため、84.5KのトレーニングサンプルであるOmniInstructの命令チューニングデータセットをキュレートし、OLMをマルチモーダルなコンテキストに適応させる。
論文 参考訳(メタデータ) (2024-09-23T17:59:05Z) - Hypergraph Multi-modal Large Language Model: Exploiting EEG and Eye-tracking Modalities to Evaluate Heterogeneous Responses for Video Understanding [25.4933695784155]
ビデオの創造性と内容の理解はしばしば個人によって異なり、年齢、経験、性別によって焦点や認知レベルが異なる。
実世界のアプリケーションとのギャップを埋めるために,ビデオデータセット用の大規模主観応答指標を導入する。
我々は,異なるユーザ間での映像コンテンツの認知的理解度を分析し,評価するためのタスクとプロトコルを開発した。
論文 参考訳(メタデータ) (2024-07-11T03:00:26Z) - TRINS: Towards Multimodal Language Models that Can Read [61.17806538631744]
TRINSはText-RichイメージINStructionデータセットである。
39,153の画像、キャプション、102,437の質問が含まれている。
本稿では,画像中のテキスト内容の理解に長けたLanguage-vision Reading Assistant(LaRA)を提案する。
論文 参考訳(メタデータ) (2024-06-10T18:52:37Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
我々は,シンプルで効果的なグローバル局所意味的一貫性学習(GLSCL)を提案する。
GLSCLは、テキストビデオ検索のためのモダリティをまたいだ潜在共有セマンティクスを活用する。
本手法はSOTAと同等の性能を実現し,計算コストの約220倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-05-21T11:59:36Z) - VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
我々は、視覚・言語モデルの機能を活用し、文脈内感情分類を強化する。
第1段階では、VLLMが対象者の明らかな感情の自然言語で記述を生成できるように促すことを提案する。
第2段階では、記述を文脈情報として使用し、画像入力とともに、トランスフォーマーベースのアーキテクチャのトレーニングに使用する。
論文 参考訳(メタデータ) (2024-04-10T15:09:15Z) - SwitchGPT: Adapting Large Language Models for Non-Text Outputs [28.656227306028743]
大規模言語モデル(LLM)は主にテキストベースのデータセットに基づいて訓練されている。
LLMは、テキスト出力による複雑な言語命令の理解と実行において、非常に優れた能力を示す。
テキストベースのLLMをマルチモーダルに進化させる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-09-14T11:38:23Z) - TextMI: Textualize Multimodal Information for Integrating Non-verbal
Cues in Pre-trained Language Models [5.668457303716451]
マルチモーダルな行動分析タスクのための汎用的,競争的なベースラインとして,TextMIを提案する。
我々のアプローチは、モデルの複雑さを著しく減らし、モデルの判断に解釈可能性を追加し、様々なタスクに適用できます。
論文 参考訳(メタデータ) (2023-03-27T17:54:32Z) - M2FNet: Multi-modal Fusion Network for Emotion Recognition in
Conversation [1.3864478040954673]
視覚,音声,テキストのモダリティから感情関連特徴を抽出するマルチモーダルフュージョンネットワーク(M2FNet)を提案する。
マルチヘッドアテンションに基づく融合機構を用いて、入力データの感情に富んだ潜在表現を結合する。
提案する特徴抽出器は,音声および視覚データから感情関連特徴を学習するために,適応的マージンに基づく新しい三重項損失関数を用いて訓練される。
論文 参考訳(メタデータ) (2022-06-05T14:18:58Z) - Towards Fast Adaptation of Pretrained Contrastive Models for
Multi-channel Video-Language Retrieval [70.30052749168013]
マルチチャンネルビデオ言語検索は、異なるチャンネルからの情報を理解するためにモデルを必要とする。
対照的なマルチモーダルモデルは、画像やビデオやテキストのエンティティの整合に非常に効果的であることが示されている。
これら2つの行を、限られたデータとリソースを持つマルチチャンネルビデオ言語検索に迅速に適応する方法は、明らかではない。
論文 参考訳(メタデータ) (2022-06-05T01:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。