A Framework for testing Federated Learning algorithms using an edge-like environment
- URL: http://arxiv.org/abs/2407.12980v1
- Date: Wed, 17 Jul 2024 19:52:53 GMT
- Title: A Framework for testing Federated Learning algorithms using an edge-like environment
- Authors: Felipe Machado Schwanck, Marcos Tomazzoli Leipnitz, Joel Luís Carbonera, Juliano Araujo Wickboldt,
- Abstract summary: Federated Learning (FL) is a machine learning paradigm in which many clients cooperatively train a single centralized model while keeping their data private and decentralized.
It is non-trivial to accurately evaluate the contributions of local models in global centralized model aggregation.
This is an example of a major challenge in FL, commonly known as data imbalance or class imbalance.
In this work, a framework is proposed and implemented to assess FL algorithms in a more easy and scalable way.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a machine learning paradigm in which many clients cooperatively train a single centralized model while keeping their data private and decentralized. FL is commonly used in edge computing, which involves placing computer workloads (both hardware and software) as close as possible to the edge, where the data is being created and where actions are occurring, enabling faster response times, greater data privacy, and reduced data transfer costs. However, due to the heterogeneous data distributions/contents of clients, it is non-trivial to accurately evaluate the contributions of local models in global centralized model aggregation. This is an example of a major challenge in FL, commonly known as data imbalance or class imbalance. In general, testing and assessing FL algorithms can be a very difficult and complex task due to the distributed nature of the systems. In this work, a framework is proposed and implemented to assess FL algorithms in a more easy and scalable way. This framework is evaluated over a distributed edge-like environment managed by a container orchestration platform (i.e. Kubernetes).
Related papers
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Optimizing the Collaboration Structure in Cross-Silo Federated Learning [43.388911479025225]
In federated learning (FL), multiple clients collaborate to train machine learning models together.
We propose FedCollab, a novel FL framework that alleviates negative transfer by clustering clients into non-overlapping coalitions.
Our results demonstrate that FedCollab effectively mitigates negative transfer across a wide range of FL algorithms and consistently outperforms other clustered FL algorithms.
arXiv Detail & Related papers (2023-06-10T18:59:50Z) - Fed-FSNet: Mitigating Non-I.I.D. Federated Learning via Fuzzy
Synthesizing Network [19.23943687834319]
Federated learning (FL) has emerged as a promising privacy-preserving distributed machine learning framework.
We propose a novel FL training framework, dubbed Fed-FSNet, using a properly designed Fuzzy Synthesizing Network (FSNet) to mitigate the Non-I.I.D. at-the-source issue.
arXiv Detail & Related papers (2022-08-21T18:40:51Z) - Mixed Federated Learning: Joint Decentralized and Centralized Learning [10.359026922702142]
Federated learning (FL) enables learning from decentralized privacy-sensitive data.
This paper introduces mixed FL, which incorporates an additional loss term calculated at the coordinating server.
arXiv Detail & Related papers (2022-05-26T22:22:15Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Semi-Supervised Federated Learning with non-IID Data: Algorithm and
System Design [42.63120623012093]
Federated Learning (FL) allows edge devices (or clients) to keep data locally while simultaneously training a shared global model.
The distribution of the client's local training data is non-independent identically distributed (non-IID)
We present a robust semi-supervised FL system design, where the system aims to solve the problem of data availability and non-IID in FL.
arXiv Detail & Related papers (2021-10-26T03:41:48Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.