Measurement-device agnostic quantum tomography
- URL: http://arxiv.org/abs/2407.13011v2
- Date: Mon, 22 Jul 2024 12:39:22 GMT
- Title: Measurement-device agnostic quantum tomography
- Authors: Robert Stárek, Martin Bielak, Miroslav Ježek,
- Abstract summary: We show that a mismatch between actual and assumed constituent measurements limits the accuracy of this characterization.
We use these artifacts to detect and quantify the mismatch and gain information about the actual measurement operators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Characterization of quantum states and devices is paramount to quantum science and technology. The characterization consists of individual measurements, which are required to be precisely known. A mismatch between actual and assumed constituent measurements limits the accuracy of this characterization. Here, we show that such a mismatch introduces reconstruction artifacts in quantum state tomography. We use these artifacts to detect and quantify the mismatch and gain information about the actual measurement operators. It consequently allows the mitigation of systematic errors in quantum measurement and state preparation.
Related papers
- Can we accurately read or write quantum data? [0.0]
I show that accurate measurements and preparations are impossible if the total Hamiltonian is bounded from below.
This result invites a reevaluation of the limitations of quantum control, quantum computing, and other quantum technologies.
arXiv Detail & Related papers (2024-04-08T16:09:51Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Deep learning of quantum entanglement from incomplete measurements [0.2493740042317776]
We demonstrate that by employing neural networks we can quantify the degree of entanglement without needing to know the full description of the quantum state.
Our method allows for direct quantification of the quantum correlations using an incomplete set of local measurements.
We derive a method based on a convolutional network input that can accept data from various measurement scenarios and perform, to some extent, independently of the measurement device.
arXiv Detail & Related papers (2022-05-03T12:55:39Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Quantum tomography of noisy ion-based qudits [0.0]
We show that it is possible to construct a quantum measurement protocol that contains no more than a single quantum operation in each measurement circuit.
The measures described can significantly improve the accuracy of quantum tomography of real ion-based qudits.
arXiv Detail & Related papers (2020-11-09T04:10:32Z) - Direct state measurements under state-preparation-and-measurement errors [0.0]
We investigate the measurement precision that undergoes the state-preparation-and-measurement errors.
Our study could provide a reliable tool for SPAM errors tomography and contribute to understanding and resolving an urgent demand for current quantum technologies.
arXiv Detail & Related papers (2020-07-10T10:45:02Z) - Semi-device-dependent blind quantum tomography [1.3075880857448061]
Current schemes typically require measurement devices for tomography that are a priori calibrated to high precision.
We show that exploiting the natural low-rank structure of quantum states of interest suffices to arrive at a highly scalable blind' tomography scheme.
We numerically demonstrate that robust blind quantum tomography is possible in a practical setting inspired by an implementation of trapped ions.
arXiv Detail & Related papers (2020-06-04T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.