Visions of a Discipline: Analyzing Introductory AI Courses on YouTube
- URL: http://arxiv.org/abs/2407.13077v1
- Date: Fri, 31 May 2024 01:48:42 GMT
- Title: Visions of a Discipline: Analyzing Introductory AI Courses on YouTube
- Authors: Severin Engelmann, Madiha Zahrah Choksi, Angelina Wang, Casey Fiesler,
- Abstract summary: We analyze the 20 most watched introductory AI courses on YouTube.
Introductory AI courses do not meaningfully engage with ethical or societal challenges of AI.
We recommend that introductory AI courses should highlight ethical challenges of AI to present a more balanced perspective.
- Score: 11.209406323898019
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Education plays an indispensable role in fostering societal well-being and is widely regarded as one of the most influential factors in shaping the future of generations to come. As artificial intelligence (AI) becomes more deeply integrated into our daily lives and the workforce, educational institutions at all levels are directing their focus on resources that cater to AI education. Our work investigates the current landscape of introductory AI courses on YouTube, and the potential for introducing ethics in this context. We qualitatively analyze the 20 most watched introductory AI courses on YouTube, coding a total of 92.2 hours of educational content viewed by close to 50 million people. Introductory AI courses do not meaningfully engage with ethical or societal challenges of AI (RQ1). When \textit{defining and framing AI}, introductory AI courses foreground excitement around AI's transformative role in society, over-exaggerate AI's current and future abilities, and anthropomorphize AI (RQ2). In \textit{teaching AI}, we see a widespread reliance on corporate AI tools and frameworks as well as a prioritization on a hands-on approach to learning rather than on conceptual foundations (RQ3). In promoting key \textit{AI practices}, introductory AI courses abstract away entirely the socio-technical nature of AI classification and prediction, for example by favoring data quantity over data quality (RQ4). We extend our analysis with recommendations that aim to integrate ethical reflections into introductory AI courses. We recommend that introductory AI courses should (1) highlight ethical challenges of AI to present a more balanced perspective, (2) raise ethical issues explicitly relevant to the technical concepts discussed and (3) nurture a sense of accountability in future AI developers.
Related papers
- AI Literacy for All: Adjustable Interdisciplinary Socio-technical Curriculum [0.8879149917735942]
This paper presents a curriculum, "AI Literacy for All," to promote an interdisciplinary understanding of AI.
The paper presents four pillars of AI literacy: understanding the scope and technical dimensions of AI, learning how to interact with Gen-AI in an informed and responsible way, the socio-technical issues of ethical and responsible AI, and the social and future implications of AI.
arXiv Detail & Related papers (2024-09-02T13:13:53Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
Next several decades may well be a turning point for humanity, comparable to the industrial revolution.
Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts.
We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.
arXiv Detail & Related papers (2024-04-06T22:18:31Z) - A call for embodied AI [1.7544885995294304]
We propose Embodied AI as the next fundamental step in the pursuit of Artificial General Intelligence.
By broadening the scope of Embodied AI, we introduce a theoretical framework based on cognitive architectures.
This framework is aligned with Friston's active inference principle, offering a comprehensive approach to EAI development.
arXiv Detail & Related papers (2024-02-06T09:11:20Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - Unpacking the "Black Box" of AI in Education [0.0]
We seek to clarify what "AI" is and the potential it holds to both advance and hamper educational opportunities that may improve the human condition.
We offer a basic introduction to different methods and philosophies underpinning AI, discuss recent advances, explore applications to education, and highlight key limitations and risks.
Our hope is to make often jargon-laden terms and concepts accessible, so that all are equipped to understand, interrogate, and ultimately shape the development of human centered AI in education.
arXiv Detail & Related papers (2022-12-31T18:27:21Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
Technologists and AI researchers have a responsibility to develop trustworthy AI systems.
To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness.
arXiv Detail & Related papers (2021-01-01T17:34:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.