SEAM: A Stochastic Benchmark for Multi-Document Tasks
- URL: http://arxiv.org/abs/2406.16086v1
- Date: Sun, 23 Jun 2024 11:57:53 GMT
- Title: SEAM: A Stochastic Benchmark for Multi-Document Tasks
- Authors: Gili Lior, Avi Caciularu, Arie Cattan, Shahar Levy, Ori Shapira, Gabriel Stanovsky,
- Abstract summary: There is currently no benchmark which measures abilities of large language models (LLMs) on multi-document tasks.
We present SEAM (a Evaluation Approach for Multi-document tasks), a conglomerate benchmark over a diverse set of multi-document datasets.
We find that multi-document tasks pose a significant challenge for LLMs, even for state-of-the-art models with 70B parameters.
- Score: 30.153949809172605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various tasks, such as summarization, multi-hop question answering, or coreference resolution, are naturally phrased over collections of real-world documents. Such tasks present a unique set of challenges, revolving around the lack of coherent narrative structure across documents, which often leads to contradiction, omission, or repetition of information. Despite their real-world application and challenging properties, there is currently no benchmark which specifically measures the abilities of large language models (LLMs) on multi-document tasks. To bridge this gap, we present SEAM (a Stochastic Evaluation Approach for Multi-document tasks), a conglomerate benchmark over a diverse set of multi-document datasets, setting conventional evaluation criteria, input-output formats, and evaluation protocols. In particular, SEAM addresses the sensitivity of LLMs to minor prompt variations through repeated evaluations, where in each evaluation we sample uniformly at random the values of arbitrary factors (e.g., the order of documents). We evaluate different LLMs on SEAM finding that multi-document tasks pose a significant challenge for LLMs, even for state-of-the-art models with 70B parameters. In addition, we show that the stochastic approach uncovers underlying statistical trends which cannot be observed in a static benchmark. We hope that SEAM will spur progress via consistent and meaningful evaluation of multi-document tasks.
Related papers
- Benchmarking Large Language Models for Conversational Question Answering in Multi-instructional Documents [61.41316121093604]
We present InsCoQA, a novel benchmark for evaluating large language models (LLMs) in the context of conversational question answering (CQA)
Sourced from extensive, encyclopedia-style instructional content, InsCoQA assesses models on their ability to retrieve, interpret, and accurately summarize procedural guidance from multiple documents.
We also propose InsEval, an LLM-assisted evaluator that measures the integrity and accuracy of generated responses and procedural instructions.
arXiv Detail & Related papers (2024-10-01T09:10:00Z) - MetaSumPerceiver: Multimodal Multi-Document Evidence Summarization for Fact-Checking [0.283600654802951]
We present a summarization model designed to generate claim-specific summaries useful for fact-checking from multimodal datasets.
We introduce a dynamic perceiver-based model that can handle inputs from multiple modalities of arbitrary lengths.
Our approach outperforms the SOTA approach by 4.6% in the claim verification task on the MOCHEG dataset.
arXiv Detail & Related papers (2024-07-18T01:33:20Z) - Needle In A Multimodal Haystack [79.81804334634408]
We present the first benchmark specifically designed to evaluate the capability of existing MLLMs to comprehend long multimodal documents.
Our benchmark includes three types of evaluation tasks: multimodal retrieval, counting, and reasoning.
We observe that existing models still have significant room for improvement on these tasks, especially on vision-centric evaluation.
arXiv Detail & Related papers (2024-06-11T13:09:16Z) - Benchmarking LLMs on the Semantic Overlap Summarization Task [9.656095701778975]
This paper comprehensively evaluates Large Language Models (LLMs) on the Semantic Overlap Summarization (SOS) task.
We report well-established metrics like ROUGE, BERTscore, and SEM-F1$ on two different datasets of alternative narratives.
arXiv Detail & Related papers (2024-02-26T20:33:50Z) - MM-BigBench: Evaluating Multimodal Models on Multimodal Content
Comprehension Tasks [56.60050181186531]
We introduce MM-BigBench, which incorporates a diverse range of metrics to offer an extensive evaluation of the performance of various models and instructions.
Our paper evaluates a total of 20 language models (14 MLLMs) on 14 multimodal datasets spanning 6 tasks, with 10 instructions for each task, and derives novel insights.
arXiv Detail & Related papers (2023-10-13T11:57:04Z) - Embrace Divergence for Richer Insights: A Multi-document Summarization Benchmark and a Case Study on Summarizing Diverse Information from News Articles [136.84278943588652]
We propose a new task of summarizing diverse information encountered in multiple news articles encompassing the same event.
To facilitate this task, we outlined a data collection schema for identifying diverse information and curated a dataset named DiverseSumm.
The dataset includes 245 news stories, with each story comprising 10 news articles and paired with a human-validated reference.
arXiv Detail & Related papers (2023-09-17T20:28:17Z) - Peek Across: Improving Multi-Document Modeling via Cross-Document
Question-Answering [49.85790367128085]
We pre-training a generic multi-document model from a novel cross-document question answering pre-training objective.
This novel multi-document QA formulation directs the model to better recover cross-text informational relations.
Unlike prior multi-document models that focus on either classification or summarization tasks, our pre-training objective formulation enables the model to perform tasks that involve both short text generation and long text generation.
arXiv Detail & Related papers (2023-05-24T17:48:40Z) - UniSumm and SummZoo: Unified Model and Diverse Benchmark for Few-Shot
Summarization [54.59104881168188]
textscUniSumm is a unified few-shot summarization model pre-trained with multiple summarization tasks.
textscSummZoo is a new benchmark to better evaluate few-shot summarizers.
arXiv Detail & Related papers (2022-11-17T18:54:47Z) - WSL-DS: Weakly Supervised Learning with Distant Supervision for Query
Focused Multi-Document Abstractive Summarization [16.048329028104643]
In the Query Focused Multi-Document Summarization (QF-MDS) task, a set of documents and a query are given where the goal is to generate a summary from these documents.
One major challenge for this task is the lack of availability of labeled training datasets.
We propose a novel weakly supervised learning approach via utilizing distant supervision.
arXiv Detail & Related papers (2020-11-03T02:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.