論文の概要: On Causally Disentangled State Representation Learning for Reinforcement Learning based Recommender Systems
- arxiv url: http://arxiv.org/abs/2407.13091v1
- Date: Thu, 18 Jul 2024 01:41:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 19:03:47.716830
- Title: On Causally Disentangled State Representation Learning for Reinforcement Learning based Recommender Systems
- Title(参考訳): 強化学習に基づくレコメンダシステムのための因果解離状態表現学習について
- Authors: Siyu Wang, Xiaocong Chen, Lina Yao,
- Abstract要約: Reinforcement Learning-based Recommender Systems (RLRS)では、ユーザインタラクションの複雑さとダイナミズムは高次元でノイズの多い状態空間をもたらすことが多い。
状態を分解し、textbfCausal-textbfIntextbfDispensable textbfState Representationsを抽出するための革新的な因果的アプローチを導入する。
- 参考スコア(独自算出の注目度): 17.750449033873036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Reinforcement Learning-based Recommender Systems (RLRS), the complexity and dynamism of user interactions often result in high-dimensional and noisy state spaces, making it challenging to discern which aspects of the state are truly influential in driving the decision-making process. This issue is exacerbated by the evolving nature of user preferences and behaviors, requiring the recommender system to adaptively focus on the most relevant information for decision-making while preserving generaliability. To tackle this problem, we introduce an innovative causal approach for decomposing the state and extracting \textbf{C}ausal-\textbf{I}n\textbf{D}ispensable \textbf{S}tate Representations (CIDS) in RLRS. Our method concentrates on identifying the \textbf{D}irectly \textbf{A}ction-\textbf{I}nfluenced \textbf{S}tate Variables (DAIS) and \textbf{A}ction-\textbf{I}nfluence \textbf{A}ncestors (AIA), which are essential for making effective recommendations. By leveraging conditional mutual information, we develop a framework that not only discerns the causal relationships within the generative process but also isolates critical state variables from the typically dense and high-dimensional state representations. We provide theoretical evidence for the identifiability of these variables. Then, by making use of the identified causal relationship, we construct causal-indispensable state representations, enabling the training of policies over a more advantageous subset of the agent's state space. We demonstrate the efficacy of our approach through extensive experiments, showcasing our method outperforms state-of-the-art methods.
- Abstract(参考訳): Reinforcement Learning-based Recommender Systems (RLRS) では、ユーザインタラクションの複雑さとダイナミズムは高次元でノイズの多い状態空間をもたらすことが多く、意思決定プロセスの推進に真の影響を及ぼす状態のどの側面を区別することが困難である。
この問題は、ユーザの嗜好や行動の進化によって悪化し、一般性を維持しつつ、意思決定に最も関連性の高い情報に適応的に焦点を合わせる必要がある。
この問題に対処するために、RLRSにおける状態の分解と \textbf{C}ausal-\textbf{I}n\textbf{D}ispensable \textbf{S}tate Representations (CIDS) 抽出のための革新的な因果的アプローチを導入する。
本手法は, 効果的なレコメンデーションを行う上で必須となる, \textbf{D}irectly \textbf{A}ction-\textbf{I}nfluenced \textbf{S}tate Variables (DAIS) と \textbf{A}ction-\textbf{I}nfluence \textbf{A}ncestors (AIA) の同定に集中する。
条件付き相互情報を活用することにより、生成過程内の因果関係を識別するだけでなく、一般に密度の高い高次元状態表現から臨界状態変数を分離する枠組みを開発する。
これらの変数の識別可能性に関する理論的証拠を提供する。
そして、同定された因果関係を利用して因果関係に欠かせない状態表現を構築し、エージェントの状態空間のより有利な部分集合に対するポリシーの訓練を可能にする。
提案手法の有効性を実証し,提案手法が最先端の手法より優れていることを示す。
関連論文リスト
- Inverse-RLignment: Inverse Reinforcement Learning from Demonstrations for LLM Alignment [62.05713042908654]
本稿では,これらの課題を克服するために,高品質な実演データを活用する新しいアプローチであるAlignment from Demonstrations (AfD)を紹介する。
AfDをシーケンシャルな意思決定フレームワークで形式化し、報酬信号の欠如というユニークな課題を強調します。
そこで本研究では,AfD に適した報酬モデル上で補間を行う計算効率のよいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-24T15:13:53Z) - Effective Reinforcement Learning Based on Structural Information Principles [19.82391136775341]
本稿では, 効率的な意思決定・意思決定のための, 新規で汎用的な構造情報原則に基づくフレームワーク,すなわちSIDMを提案する。
SIDMは、様々な単一エージェントおよびマルチエージェントRLアルゴリズムに柔軟に組み込むことができ、その性能を向上させることができる。
論文 参考訳(メタデータ) (2024-04-15T13:02:00Z) - Information-Theoretic State Variable Selection for Reinforcement
Learning [4.2050490361120465]
本稿では,情報理論的基準であるTransfer Entropy Redundancy Criterion (TERC)を紹介する。
TERCは、トレーニング中に状態変数からアクションに転送されるテクステントロピーがあるかどうかを判断する。
エージェントの最終性能に影響を与えない状態から変数を確実に排除する TERC に基づくアルゴリズムを定義する。
論文 参考訳(メタデータ) (2024-01-21T14:51:09Z) - Sequential Action-Induced Invariant Representation for Reinforcement
Learning [1.2046159151610263]
視覚的障害を伴う高次元観察からタスク関連状態表現を正確に学習する方法は、視覚的強化学習において難しい問題である。
本稿では,逐次動作の制御信号に従うコンポーネントのみを保持するために,補助学習者によってエンコーダを最適化した逐次行動誘発不変表現(SAR)法を提案する。
論文 参考訳(メタデータ) (2023-09-22T05:31:55Z) - Hierarchical State Abstraction Based on Structural Information
Principles [70.24495170921075]
本稿では、情報理論の観点から、新しい数学的構造情報原理に基づく状態抽象化フレームワーク、すなわちSISAを提案する。
SISAは、様々な表現学習目標と柔軟に統合され、パフォーマンスをさらに向上する一般的なフレームワークである。
論文 参考訳(メタデータ) (2023-04-24T11:06:52Z) - Causal Disentangled Variational Auto-Encoder for Preference
Understanding in Recommendation [50.93536377097659]
本稿では,コメンテータシステムにおける対話データから因果不整合表現を学習するためのCaD-VAE(Causal Disentangled Variational Auto-Encoder)を提案する。
この手法は構造因果モデルを用いて、潜在因子間の因果関係を記述する因果表現を生成する。
論文 参考訳(メタデータ) (2023-04-17T00:10:56Z) - Feature Correlation-guided Knowledge Transfer for Federated
Self-supervised Learning [19.505644178449046]
特徴相関に基づくアグリゲーション(FedFoA)を用いたフェデレーション型自己教師型学習法を提案する。
私たちの洞察は、機能相関を利用して、特徴マッピングを整列し、ローカルトレーニングプロセス中にクライアント間でローカルモデルの更新を校正することにあります。
我々はFedFoAがモデルに依存しないトレーニングフレームワークであることを証明する。
論文 参考訳(メタデータ) (2022-11-14T13:59:50Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
報酬を最大化しつつ、行動を通じて特定の機密状態変数の開示を最小限に抑えながら、報酬を最大化する政策を訓練する課題を考察する。
本稿では, 感性状態と行動の相互情報に基づく正則化器を導入することで, この問題を解決する。
プライバシ制約のあるポリシーを最適化するためのモデルベース推定器を開発した。
論文 参考訳(メタデータ) (2020-12-30T03:22:35Z) - Invariant Causal Prediction for Block MDPs [106.63346115341862]
環境全体にわたる一般化は、実世界の課題への強化学習アルゴリズムの適用の成功に不可欠である。
本稿では,多環境環境における新しい観測を一般化するモデル不適合状態抽象化(MISA)を学習するための不変予測法を提案する。
論文 参考訳(メタデータ) (2020-03-12T21:03:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。