Participatory Approaches in AI Development and Governance: Case Studies
- URL: http://arxiv.org/abs/2407.13103v1
- Date: Mon, 3 Jun 2024 10:10:23 GMT
- Title: Participatory Approaches in AI Development and Governance: Case Studies
- Authors: Ambreesh Parthasarathy, Aditya Phalnikar, Gokul S Krishnan, Ameen Jauhar, Balaraman Ravindran,
- Abstract summary: This paper forms the second of a two-part series on the value of a participatory approach to AI development and deployment.
The first paper had crafted a principled, as well as pragmatic, justification for deploying participatory methods in these two exercises.
This paper will test these preliminary conclusions in two sectors, the use of facial recognition technology in the upkeep of law and order and the use of large language models in the healthcare sector.
- Score: 9.824305892501686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper forms the second of a two-part series on the value of a participatory approach to AI development and deployment. The first paper had crafted a principled, as well as pragmatic, justification for deploying participatory methods in these two exercises (that is, development and deployment of AI). The pragmatic justification is that it improves the quality of the overall algorithm by providing more granular and minute information. The more principled justification is that it offers a voice to those who are going to be affected by the deployment of the algorithm, and through engagement attempts to build trust and buy-in for an AI system. By a participatory approach, we mean including various stakeholders (defined a certain way) in the actual decision making process through the life cycle of an AI system. Despite the justifications offered above, actual implementation depends crucially on how stakeholders in the entire process are identified, what information is elicited from them, and how it is incorporated. This paper will test these preliminary conclusions in two sectors, the use of facial recognition technology in the upkeep of law and order and the use of large language models in the healthcare sector. These sectors have been chosen for two primary reasons. Since Facial Recognition Technologies are a branch of AI solutions that are well-researched and the impact of which is well documented, it provides an established space to illustrate the various aspects of adapting PAI to an existing domain, especially one that has been quite contentious in the recent past. LLMs in healthcare provide a canvas for a relatively less explored space, and helps us illustrate how one could possibly envision enshrining the principles of PAI for a relatively new technology, in a space where innovation must always align with patient welfare.
Related papers
- Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Participatory Approaches in AI Development and Governance: A Principled Approach [9.271573427680087]
This paper forms the first part of a two-part series on participatory governance in AI.
It advances the premise that a participatory approach is beneficial to building and using more responsible, safe, and human-centric AI systems.
arXiv Detail & Related papers (2024-06-03T09:49:42Z) - Crossing the principle-practice gap in AI ethics with ethical problem-solving [0.0]
How to bridge the principle-practice gap separating ethical discourse from the technical side of AI development remains an open problem.
EPS is a methodology promoting responsible, human-centric, and value-oriented AI development.
We utilize EPS as a blueprint to propose the implementation of Ethics as a Service Platform.
arXiv Detail & Related papers (2024-04-16T14:35:13Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Trust, Accountability, and Autonomy in Knowledge Graph-based AI for
Self-determination [1.4305544869388402]
Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making.
The integration of KGs with neuronal learning is currently a topic of active research.
This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination.
arXiv Detail & Related papers (2023-10-30T12:51:52Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Think About the Stakeholders First! Towards an Algorithmic Transparency
Playbook for Regulatory Compliance [14.043062659347427]
Laws are being proposed and passed by governments around the world to regulate Artificial Intelligence (AI) systems implemented into the public and private sectors.
Many of these regulations address the transparency of AI systems, and related citizen-aware issues like allowing individuals to have the right to an explanation about how an AI system makes a decision that impacts them.
We propose a novel stakeholder-first approach that assists technologists in designing transparent, regulatory compliant systems.
arXiv Detail & Related papers (2022-06-10T09:39:00Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - A Survey on AI Assurance [0.0]
An important notion for the adoption of AI algorithms into operational decision process is the concept of assurance.
This manuscript provides a systematic review of research works that are relevant to AI assurance between years 1985 - 2021.
A new AI assurance definition is adopted and presented and assurance methods are contrasted and tabulated.
arXiv Detail & Related papers (2021-11-15T02:45:34Z) - A Methodology for Creating AI FactSheets [67.65802440158753]
This paper describes a methodology for creating the form of AI documentation we call FactSheets.
Within each step of the methodology, we describe the issues to consider and the questions to explore.
This methodology will accelerate the broader adoption of transparent AI documentation.
arXiv Detail & Related papers (2020-06-24T15:08:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.