論文の概要: Improvement of Applicability in Student Performance Prediction Based on Transfer Learning
- arxiv url: http://arxiv.org/abs/2407.13112v1
- Date: Sat, 1 Jun 2024 13:09:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 08:07:30.759415
- Title: Improvement of Applicability in Student Performance Prediction Based on Transfer Learning
- Title(参考訳): 転校学習に基づく生徒の成績予測における適用性の向上
- Authors: Yan Zhao,
- Abstract要約: 本研究では,様々な分布を持つデータセットの転送学習手法を用いて,予測精度を向上させる手法を提案する。
モデルは、その一般化能力と予測精度を高めるために訓練され、評価された。
実験により, この手法は根平均角誤差 (RMSE) と平均絶対誤差 (MAE) の低減に優れていることが示された。
結果は、より多くのレイヤを凍結することで、複雑でノイズの多いデータのパフォーマンスが向上することを示した。
- 参考スコア(独自算出の注目度): 2.3290007848431955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting student performance under varying data distributions is a challenging task. This study proposes a method to improve prediction accuracy by employing transfer learning techniques on the dataset with varying distributions. Using datasets from mathematics and Portuguese language courses, the model was trained and evaluated to enhance its generalization ability and prediction accuracy. The datasets used in this study were sourced from Kaggle, comprising a variety of attributes such as demographic details, social factors, and academic performance. The methodology involves using an Artificial Neural Network (ANN) combined with transfer learning, where some layer weights were progressively frozen, and the remaining layers were fine-tuned. Experimental results demonstrated that this approach excels in reducing Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), while improving the coefficient of determination (R2). The model was initially trained on a subset with a larger sample size and subsequently fine-tuned on another subset. This method effectively facilitated knowledge transfer, enhancing model performance on tasks with limited data. The results demonstrate that freezing more layers improves performance for complex and noisy data, whereas freezing fewer layers is more effective for simpler and larger datasets. This study highlights the potential of transfer learning in predicting student performance and suggests future research to explore domain adaptation techniques for unlabeled datasets.
- Abstract(参考訳): 様々なデータ分布下での学生のパフォーマンス予測は難しい課題である。
本研究では,様々な分布を持つデータセットの転送学習手法を用いて,予測精度を向上させる手法を提案する。
数学とポルトガル語のコースのデータセットを用いて、モデルを訓練し、その一般化能力と予測精度を高めるために評価した。
この研究で使用されたデータセットは、人口統計の詳細、社会的要因、学術的業績など、さまざまな属性を含むKaggleから得られた。
この手法は、ANN(Artificial Neural Network)とトランスファーラーニングを組み合わせたもので、いくつかの層が徐々に凍結され、残りの層は微調整されている。
実験により, 根平均角誤差 (RMSE) と平均絶対誤差 (MAE) を低減し, 判定係数 (R2) を向上した。
このモデルは最初、より大きなサンプルサイズを持つサブセットで訓練され、その後、別のサブセットで微調整された。
この方法は知識伝達を効果的に促進し、限られたデータを持つタスクにおけるモデル性能を向上させる。
結果は、より多くのレイヤを凍結することで、複雑でノイズの多いデータのパフォーマンスが向上することを示した。
本研究は,学生のパフォーマンス予測における伝達学習の可能性を強調し,未ラベルデータセットに対する領域適応手法を探求するための今後の研究を提案する。
関連論文リスト
- Data Augmentation for Sparse Multidimensional Learning Performance Data Using Generative AI [17.242331892899543]
学習パフォーマンスデータは、適応学習における正しい解答や問題解決の試みを記述している。
学習性能データは、適応的なアイテム選択のため、ほとんどの実世界のアプリケーションでは、非常にスパースな(80%(sim)90%の欠落)傾向にある。
本稿では,学習者のデータの分散性に対処するために,学習者のデータを拡張するための体系的フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T00:25:07Z) - An In-Depth Analysis of Data Reduction Methods for Sustainable Deep Learning [0.15833270109954137]
トレーニングデータセットのサイズを減らすために、最大8つの異なる方法を提示します。
また、それらを適用するPythonパッケージも開発しています。
これらのデータ削減手法がデータセットの表現性に与える影響を実験的に比較した。
論文 参考訳(メタデータ) (2024-03-22T12:06:40Z) - Simulation-Enhanced Data Augmentation for Machine Learning Pathloss
Prediction [9.664420734674088]
本稿では,機械学習パスロス予測のための新しいシミュレーション強化データ拡張手法を提案する。
本手法は,細胞被覆シミュレータから生成した合成データと,独立して収集した実世界のデータセットを統合する。
合成データの統合は、異なる環境におけるモデルの一般化可能性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-02-03T00:38:08Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Benchmark data to study the influence of pre-training on explanation
performance in MR image classification [0.6927055673104934]
CNNは頻繁に使われ、医療予測タスクでうまく使われている。
それらは転送学習と組み合わせて使われることが多く、タスクのトレーニングデータが不足するとパフォーマンスが向上する。
従来,XAI法における地中構造データに対する「説明性能」を定量的に評価することはめったにない。
論文 参考訳(メタデータ) (2023-06-21T09:53:37Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - An Exploration of Data Efficiency in Intra-Dataset Task Transfer for
Dialog Understanding [65.75873687351553]
本研究は,対話領域における逐次移動学習における目標タスク訓練データ量の影響について検討する。
非意図的に、我々のデータでは、タスクトレーニングデータのサイズを目標とする場合、シーケンシャルトランスファーラーニングがトランスファーラーニングなしで同じモデルと比較した場合、最小限の効果が示される。
論文 参考訳(メタデータ) (2022-10-21T04:36:46Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - Investigating Transferability in Pretrained Language Models [8.83046338075119]
本稿では,各事前学習層が伝達タスク性能に与える影響を簡易なアブレーション手法で判定する。
この手法により、BERTでは、下流GLUEタスクにおける高いプローブ性能を持つレイヤは、それらのタスクに対して高い精度で必要でも十分でもないことが分かる。
論文 参考訳(メタデータ) (2020-04-30T17:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。