Graph-Supported Dynamic Algorithm Configuration for Multi-Objective Combinatorial Optimization
- URL: http://arxiv.org/abs/2505.16471v2
- Date: Sat, 24 May 2025 10:58:05 GMT
- Title: Graph-Supported Dynamic Algorithm Configuration for Multi-Objective Combinatorial Optimization
- Authors: Robbert Reijnen, Yaoxin Wu, Zaharah Bukhsh, Yingqian Zhang,
- Abstract summary: This paper presents a novel graph neural network (GNN) based DRL to configure multi-objective evolutionary algorithms.<n>We model the dynamic algorithm configuration as a Markov decision process, representing the convergence of solutions in the objective space by a graph.<n> Experiments on diverse MOCO challenges indicate that our method outperforms traditional and DRL-based algorithm configuration methods in terms of efficacy and adaptability.
- Score: 5.481047026874548
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep reinforcement learning (DRL) has been widely used for dynamic algorithm configuration, particularly in evolutionary computation, which benefits from the adaptive update of parameters during the algorithmic execution. However, applying DRL to algorithm configuration for multi-objective combinatorial optimization (MOCO) problems remains relatively unexplored. This paper presents a novel graph neural network (GNN) based DRL to configure multi-objective evolutionary algorithms. We model the dynamic algorithm configuration as a Markov decision process, representing the convergence of solutions in the objective space by a graph, with their embeddings learned by a GNN to enhance the state representation. Experiments on diverse MOCO challenges indicate that our method outperforms traditional and DRL-based algorithm configuration methods in terms of efficacy and adaptability. It also exhibits advantageous generalizability across objective types and problem sizes, and applicability to different evolutionary computation methods.
Related papers
- RL-finetuning LLMs from on- and off-policy data with a single algorithm [53.70731390624718]
We introduce a novel reinforcement learning algorithm (AGRO) for fine-tuning large-language models.<n>AGRO leverages the concept of generation consistency, which states that the optimal policy satisfies the notion of consistency across any possible generation of the model.<n>We derive algorithms that find optimal solutions via the sample-based policy gradient and provide theoretical guarantees on their convergence.
arXiv Detail & Related papers (2025-03-25T12:52:38Z) - Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
This paper focuses on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO)
In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation.
For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Tuning, and introduces a radius ( R ) concept in deterministic crowding.
arXiv Detail & Related papers (2024-11-12T15:18:48Z) - MOANA: Multi-Objective Ant Nesting Algorithm for Optimization Problems [21.80971564725773]
The Multi-Objective Ant Nesting Algorithm (MOANA) is a novel extension of the Ant Nesting Evolutionary Algorithm (ANA)<n>MOANA addresses key limitations of traditional evolutionary algorithms by improving scalability and diversity in multi-objective scenarios.<n>MOANA's applicability to real-world engineering optimization, such as welded beam design, showcases its ability to generate a broad range of optimal solutions.
arXiv Detail & Related papers (2024-11-08T18:31:53Z) - Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
We propose a novel approach integrating a two-stage training technique with population-based optimization algorithms incorporating local search capabilities.
Our experiments demonstrate that the proposed method outperforms state-of-the-art gradient-based techniques.
arXiv Detail & Related papers (2024-10-26T17:31:15Z) - Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW)
The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL.
arXiv Detail & Related papers (2024-07-18T02:46:06Z) - Deep Reinforcement Learning for Dynamic Algorithm Selection: A
Proof-of-Principle Study on Differential Evolution [27.607740475924448]
We propose a deep reinforcement learning-based dynamic algorithm selection framework to accomplish this task.
We employ a sophisticated deep neural network model to infer the optimal action, ensuring informed algorithm selections.
As a proof-of-principle study, we apply this framework to a group of Differential Evolution algorithms.
arXiv Detail & Related papers (2024-03-04T15:40:28Z) - Continuous Cartesian Genetic Programming based representation for
Multi-Objective Neural Architecture Search [12.545742558041583]
We propose a novel approach for designing less complex yet highly effective convolutional neural networks (CNNs)
Our approach combines real-based and block-chained CNNs representations based on cartesian genetic programming (CGP) for neural architecture search (NAS)
Two variants are introduced that differ in the granularity of the search space they consider.
arXiv Detail & Related papers (2023-06-05T07:32:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Evolving Pareto-Optimal Actor-Critic Algorithms for Generalizability and
Stability [67.8426046908398]
Generalizability and stability are two key objectives for operating reinforcement learning (RL) agents in the real world.
This paper presents MetaPG, an evolutionary method for automated design of actor-critic loss functions.
arXiv Detail & Related papers (2022-04-08T20:46:16Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.