Reconfigurable Intelligent Surface Aided Vehicular Edge Computing: Joint Phase-shift Optimization and Multi-User Power Allocation
- URL: http://arxiv.org/abs/2407.13123v1
- Date: Thu, 18 Jul 2024 03:18:59 GMT
- Title: Reconfigurable Intelligent Surface Aided Vehicular Edge Computing: Joint Phase-shift Optimization and Multi-User Power Allocation
- Authors: Kangwei Qi, Qiong Wu, Pingyi Fan, Nan Cheng, Wen Chen, Khaled B. Letaief,
- Abstract summary: We introduce the use of Reconfigurable Intelligent Surfaces (RIS), which provide alternative communication pathways to assist vehicular communication.
We propose an innovative deep reinforcement learning (DRL) framework that combines the Deep Deterministic Policy Gradient (DDPG) algorithm for optimizing RIS phase-shift coefficients and the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm for optimizing the power allocation of vehicle user (VU)
Simulation results show that our proposed scheme outperforms the traditional centralized DDPG, Twin Delayed Deep Deterministic Policy Gradient (TD3) and some typical schemes.
- Score: 28.47670676456068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicular edge computing (VEC) is an emerging technology with significant potential in the field of internet of vehicles (IoV), enabling vehicles to perform intensive computational tasks locally or offload them to nearby edge devices. However, the quality of communication links may be severely deteriorated due to obstacles such as buildings, impeding the offloading process. To address this challenge, we introduce the use of Reconfigurable Intelligent Surfaces (RIS), which provide alternative communication pathways to assist vehicular communication. By dynamically adjusting the phase-shift of the RIS, the performance of VEC systems can be substantially improved. In this work, we consider a RIS-assisted VEC system, and design an optimal scheme for local execution power, offloading power, and RIS phase-shift, where random task arrivals and channel variations are taken into account. To address the scheme, we propose an innovative deep reinforcement learning (DRL) framework that combines the Deep Deterministic Policy Gradient (DDPG) algorithm for optimizing RIS phase-shift coefficients and the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm for optimizing the power allocation of vehicle user (VU). Simulation results show that our proposed scheme outperforms the traditional centralized DDPG, Twin Delayed Deep Deterministic Policy Gradient (TD3) and some typical stochastic schemes.
Related papers
- Reconfigurable Intelligent Surface Assisted VEC Based on Multi-Agent Reinforcement Learning [33.620752444256716]
Vehicular edge computing enables vehicles to perform high-intensity tasks by executing tasks locally or offloading them to nearby edge devices.
Reassisted (RIS) is introduced to support vehicle communication and provide alternative communication path.
We propose a new deep reinforcement learning framework that employs modified multiagent deep deterministic gradient policy.
arXiv Detail & Related papers (2024-06-17T08:35:32Z) - Deep-Reinforcement-Learning-Based AoI-Aware Resource Allocation for RIS-Aided IoV Networks [43.443526528832145]
We propose a RIS-assisted internet of vehicles (IoV) network, considering the vehicle-to-everything (V2X) communication method.
In order to improve the timeliness of vehicle-to-infrastructure (V2I) links and the stability of vehicle-to-vehicle (V2V) links, we introduce the age of information (AoI) model and the payload transmission probability model.
arXiv Detail & Related papers (2024-06-17T06:16:07Z) - Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
We propose a novel algorithm for energy-efficient, low-latency, accurate inference at the wireless edge.
We consider a scenario where new data are continuously generated/collected by a set of devices and are handled through a dynamic queueing system.
arXiv Detail & Related papers (2023-05-18T12:46:42Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
Reconfigurable intelligent surfaces (RISs) have a revolutionary capability to customize the radio propagation environment for wireless networks.
To fully exploit the advantages of RISs in wireless systems, the phases of the reflecting elements must be jointly designed with conventional communication resources.
This paper provides a review of current optimization methods and artificial intelligence-based methods for handling the constraints imposed by RIS.
arXiv Detail & Related papers (2022-04-28T09:26:14Z) - Hierarchical Multi-Agent DRL-Based Framework for Joint Multi-RAT
Assignment and Dynamic Resource Allocation in Next-Generation HetNets [21.637440368520487]
This paper considers the problem of cost-aware downlink sum-rate via joint optimal radio access technologies (RATs) assignment and power allocation in next-generation wireless networks (HetNets)
We propose a hierarchical multi-agent deep reinforcement learning (DRL) framework, called DeepRAT, to solve it efficiently and learn system dynamics.
In particular, the DeepRAT framework decomposes the problem into two main stages; the RATs-EDs assignment stage, which implements a single-agent Deep Q Network algorithm, and the power allocation stage, which utilizes a multi-agent Deep Deterministic Policy Gradient
arXiv Detail & Related papers (2022-02-28T09:49:44Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
A communication enabled indoor intelligent robots (IRs) service framework is proposed.
Lego modeling method is proposed, which can deterministically describe the indoor layout and channel state.
The investigated radio map is invoked as a virtual environment to train the reinforcement learning agent.
arXiv Detail & Related papers (2020-11-23T21:45:01Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.