A light-weight and efficient punctuation and word casing prediction model for on-device streaming ASR
- URL: http://arxiv.org/abs/2407.13142v1
- Date: Thu, 18 Jul 2024 04:01:12 GMT
- Title: A light-weight and efficient punctuation and word casing prediction model for on-device streaming ASR
- Authors: Jian You, Xiangfeng Li,
- Abstract summary: Punctuation and word casing prediction are necessary for automatic speech recognition (ASR)
We propose a light-weight and efficient model that jointly predicts punctuation and word casing in real time.
- Score: 0.31077024712075796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Punctuation and word casing prediction are necessary for automatic speech recognition (ASR). With the popularity of on-device end-to-end streaming ASR systems, the on-device punctuation and word casing prediction become a necessity while we found little discussion on this. With the emergence of Transformer, Transformer based models have been explored for this scenario. However, Transformer based models are too large for on-device ASR systems. In this paper, we propose a light-weight and efficient model that jointly predicts punctuation and word casing in real time. The model is based on Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM). Experimental results on the IWSLT2011 test set show that the proposed model obtains 9% relative improvement compared to the best of non-Transformer models on overall F1-score. Compared to the representative of Transformer based models, the proposed model achieves comparable results to the representative model while being only one-fortieth its size and 2.5 times faster in terms of inference time. It is suitable for on-device streaming ASR systems. Our code is publicly available.
Related papers
- Video Prediction by Efficient Transformers [14.685237010856953]
We present a new family of Transformer-based models for video prediction.
Experiments show that the proposed video prediction models are competitive with more complex state-of-the-art convolutional-LSTM based models.
arXiv Detail & Related papers (2022-12-12T16:46:48Z) - Structured State Space Decoder for Speech Recognition and Synthesis [9.354721572095272]
A structured state space model (S4) has been recently proposed, producing promising results for various long-sequence modeling tasks.
In this study, we applied S4 as a decoder for ASR and text-to-speech tasks by comparing it with the Transformer decoder.
For the ASR task, our experimental results demonstrate that the proposed model achieves a competitive word error rate (WER) of 1.88%/4.25%.
arXiv Detail & Related papers (2022-10-31T06:54:23Z) - VQ-T: RNN Transducers using Vector-Quantized Prediction Network States [52.48566999668521]
We propose to use vector-quantized long short-term memory units in the prediction network of RNN transducers.
By training the discrete representation jointly with the ASR network, hypotheses can be actively merged for lattice generation.
Our experiments on the Switchboard corpus show that the proposed VQ RNN transducers improve ASR performance over transducers with regular prediction networks.
arXiv Detail & Related papers (2022-08-03T02:45:52Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Factorized Neural Transducer for Efficient Language Model Adaptation [51.81097243306204]
We propose a novel model, factorized neural Transducer, by factorizing the blank and vocabulary prediction.
It is expected that this factorization can transfer the improvement of the standalone language model to the Transducer for speech recognition.
We demonstrate that the proposed factorized neural Transducer yields 15% to 20% WER improvements when out-of-domain text data is used for language model adaptation.
arXiv Detail & Related papers (2021-09-27T15:04:00Z) - Non-autoregressive Transformer-based End-to-end ASR using BERT [13.07939371864781]
This paper presents a transformer-based end-to-end automatic speech recognition (ASR) model based on BERT.
A series of experiments conducted on the AISHELL-1 dataset demonstrates competitive or superior results.
arXiv Detail & Related papers (2021-04-10T16:22:17Z) - Transformer-based ASR Incorporating Time-reduction Layer and Fine-tuning
with Self-Knowledge Distillation [11.52842516726486]
We propose a Transformer-based ASR model with the time reduction layer, in which we incorporate time reduction layer inside transformer encoder layers.
We also introduce a fine-tuning approach for pre-trained ASR models using self-knowledge distillation (S-KD) which further improves the performance of our ASR model.
With language model (LM) fusion, we achieve new state-of-the-art word error rate (WER) results for Transformer-based ASR models.
arXiv Detail & Related papers (2021-03-17T21:02:36Z) - Relative Positional Encoding for Speech Recognition and Direct
Translation [72.64499573561922]
We adapt the relative position encoding scheme to the Speech Transformer.
As a result, the network can better adapt to the variable distributions present in speech data.
arXiv Detail & Related papers (2020-05-20T09:53:06Z) - Conformer: Convolution-augmented Transformer for Speech Recognition [60.119604551507805]
Recently Transformer and Convolution neural network (CNN) based models have shown promising results in Automatic Speech Recognition (ASR)
We propose the convolution-augmented transformer for speech recognition, named Conformer.
On the widely used LibriSpeech benchmark, our model achieves WER of 2.1%/4.3% without using a language model and 1.9%/3.9% with an external language model on test/testother.
arXiv Detail & Related papers (2020-05-16T20:56:25Z) - Deliberation Model Based Two-Pass End-to-End Speech Recognition [52.45841282906516]
A two-pass model has been proposed to rescore streamed hypotheses using the non-streaming Listen, Attend and Spell (LAS) model.
The model attends to acoustics to rescore hypotheses, as opposed to a class of neural correction models that use only first-pass text hypotheses.
A bidirectional encoder is used to extract context information from first-pass hypotheses.
arXiv Detail & Related papers (2020-03-17T22:01:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.