Robust Multivariate Time Series Forecasting against Intra- and Inter-Series Transitional Shift
- URL: http://arxiv.org/abs/2407.13194v1
- Date: Thu, 18 Jul 2024 06:16:03 GMT
- Title: Robust Multivariate Time Series Forecasting against Intra- and Inter-Series Transitional Shift
- Authors: Hui He, Qi Zhang, Kun Yi, Xiaojun Xue, Shoujin Wang, Liang Hu, Longbing Cao,
- Abstract summary: We present a unified Probabilistic Graphical Model to Jointly capturing intra-/inter-series correlations and modeling the time-variant transitional distribution.
We validate the effectiveness and efficiency of JointPGM through extensive experiments on six highly non-stationary MTS datasets.
- Score: 40.734564394464556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The non-stationary nature of real-world Multivariate Time Series (MTS) data presents forecasting models with a formidable challenge of the time-variant distribution of time series, referred to as distribution shift. Existing studies on the distribution shift mostly adhere to adaptive normalization techniques for alleviating temporal mean and covariance shifts or time-variant modeling for capturing temporal shifts. Despite improving model generalization, these normalization-based methods often assume a time-invariant transition between outputs and inputs but disregard specific intra-/inter-series correlations, while time-variant models overlook the intrinsic causes of the distribution shift. This limits model expressiveness and interpretability of tackling the distribution shift for MTS forecasting. To mitigate such a dilemma, we present a unified Probabilistic Graphical Model to Jointly capturing intra-/inter-series correlations and modeling the time-variant transitional distribution, and instantiate a neural framework called JointPGM for non-stationary MTS forecasting. Specifically, JointPGM first employs multiple Fourier basis functions to learn dynamic time factors and designs two distinct learners: intra-series and inter-series learners. The intra-series learner effectively captures temporal dynamics by utilizing temporal gates, while the inter-series learner explicitly models spatial dynamics through multi-hop propagation, incorporating Gumbel-softmax sampling. These two types of series dynamics are subsequently fused into a latent variable, which is inversely employed to infer time factors, generate final prediction, and perform reconstruction. We validate the effectiveness and efficiency of JointPGM through extensive experiments on six highly non-stationary MTS datasets, achieving state-of-the-art forecasting performance of MTS forecasting.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Considering Nonstationary within Multivariate Time Series with
Variational Hierarchical Transformer for Forecasting [12.793705636683402]
We develop a powerful hierarchical probabilistic generative module to consider the non-stationarity and intrinsic characteristics within MTS.
We then combine it with transformer for a well-defined variational generative dynamic model named Hierarchical Time series Variational Transformer (HTV-Trans)
Being a powerful probabilistic model, HTV-Trans is utilized to learn expressive representations of MTS and applied to forecasting tasks.
arXiv Detail & Related papers (2024-03-08T16:04:36Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - MTS-Mixers: Multivariate Time Series Forecasting via Factorized Temporal
and Channel Mixing [18.058617044421293]
This paper investigates the contributions and deficiencies of attention mechanisms on the performance of time series forecasting.
We propose MTS-Mixers, which use two factorized modules to capture temporal and channel dependencies.
Experimental results on several real-world datasets show that MTS-Mixers outperform existing Transformer-based models with higher efficiency.
arXiv Detail & Related papers (2023-02-09T08:52:49Z) - Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting [41.206310481507565]
We propose a novel framework temporal conditional variational autoencoder (TCVAE) to model the dynamic distributional dependencies over time.
The TCVAE infers the dependencies as a temporal conditional distribution to leverage latent variables.
We show the TCVAE's superior robustness and effectiveness over the state-of-the-art MTS forecasting baselines.
arXiv Detail & Related papers (2022-09-01T10:06:22Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
We present Model-Attentive Ensemble learning for Sequence modeling (MAES)
MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions.
We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.
arXiv Detail & Related papers (2021-02-23T05:23:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.