Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting
- URL: http://arxiv.org/abs/2209.00654v4
- Date: Tue, 2 Apr 2024 06:58:50 GMT
- Title: Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting
- Authors: Hui He, Qi Zhang, Kun Yi, Kaize Shi, Zhendong Niu, Longbing Cao,
- Abstract summary: We propose a novel framework temporal conditional variational autoencoder (TCVAE) to model the dynamic distributional dependencies over time.
The TCVAE infers the dependencies as a temporal conditional distribution to leverage latent variables.
We show the TCVAE's superior robustness and effectiveness over the state-of-the-art MTS forecasting baselines.
- Score: 41.206310481507565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the non-stationary nature, the distribution of real-world multivariate time series (MTS) changes over time, which is known as distribution drift. Most existing MTS forecasting models greatly suffer from distribution drift and degrade the forecasting performance over time. Existing methods address distribution drift via adapting to the latest arrived data or self-correcting per the meta knowledge derived from future data. Despite their great success in MTS forecasting, these methods hardly capture the intrinsic distribution changes, especially from a distributional perspective. Accordingly, we propose a novel framework temporal conditional variational autoencoder (TCVAE) to model the dynamic distributional dependencies over time between historical observations and future data in MTSs and infer the dependencies as a temporal conditional distribution to leverage latent variables. Specifically, a novel temporal Hawkes attention mechanism represents temporal factors subsequently fed into feed-forward networks to estimate the prior Gaussian distribution of latent variables. The representation of temporal factors further dynamically adjusts the structures of Transformer-based encoder and decoder to distribution changes by leveraging a gated attention mechanism. Moreover, we introduce conditional continuous normalization flow to transform the prior Gaussian to a complex and form-free distribution to facilitate flexible inference of the temporal conditional distribution. Extensive experiments conducted on six real-world MTS datasets demonstrate the TCVAE's superior robustness and effectiveness over the state-of-the-art MTS forecasting baselines. We further illustrate the TCVAE applicability through multifaceted case studies and visualization in real-world scenarios.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - Evolving Multi-Scale Normalization for Time Series Forecasting under Distribution Shifts [20.02869280775877]
We propose a novel model-agnostic Evolving Multi-Scale Normalization (EvoMSN) framework to tackle the distribution shift problem.
We evaluate the effectiveness of EvoMSN in improving the performance of five mainstream forecasting methods on benchmark datasets.
arXiv Detail & Related papers (2024-09-29T14:26:22Z) - Robust Multivariate Time Series Forecasting against Intra- and Inter-Series Transitional Shift [40.734564394464556]
We present a unified Probabilistic Graphical Model to Jointly capturing intra-/inter-series correlations and modeling the time-variant transitional distribution.
We validate the effectiveness and efficiency of JointPGM through extensive experiments on six highly non-stationary MTS datasets.
arXiv Detail & Related papers (2024-07-18T06:16:03Z) - Considering Nonstationary within Multivariate Time Series with
Variational Hierarchical Transformer for Forecasting [12.793705636683402]
We develop a powerful hierarchical probabilistic generative module to consider the non-stationarity and intrinsic characteristics within MTS.
We then combine it with transformer for a well-defined variational generative dynamic model named Hierarchical Time series Variational Transformer (HTV-Trans)
Being a powerful probabilistic model, HTV-Trans is utilized to learn expressive representations of MTS and applied to forecasting tasks.
arXiv Detail & Related papers (2024-03-08T16:04:36Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Out-of-Distribution Generalized Dynamic Graph Neural Network with
Disentangled Intervention and Invariance Promotion [61.751257172868186]
Dynamic graph neural networks (DyGNNs) have demonstrated powerful predictive abilities by exploiting graph and temporal dynamics.
Existing DyGNNs fail to handle distribution shifts, which naturally exist in dynamic graphs.
arXiv Detail & Related papers (2023-11-24T02:42:42Z) - Perceiver-based CDF Modeling for Time Series Forecasting [25.26713741799865]
We propose a new architecture, called perceiver-CDF, for modeling cumulative distribution functions (CDF) of time series data.
Our approach combines the perceiver architecture with a copula-based attention mechanism tailored for multimodal time series prediction.
Experiments on the unimodal and multimodal benchmarks consistently demonstrate a 20% improvement over state-of-the-art methods.
arXiv Detail & Related papers (2023-10-03T01:13:17Z) - MTS-Mixers: Multivariate Time Series Forecasting via Factorized Temporal
and Channel Mixing [18.058617044421293]
This paper investigates the contributions and deficiencies of attention mechanisms on the performance of time series forecasting.
We propose MTS-Mixers, which use two factorized modules to capture temporal and channel dependencies.
Experimental results on several real-world datasets show that MTS-Mixers outperform existing Transformer-based models with higher efficiency.
arXiv Detail & Related papers (2023-02-09T08:52:49Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.