Improved Esophageal Varices Assessment from Non-Contrast CT Scans
- URL: http://arxiv.org/abs/2407.13210v1
- Date: Thu, 18 Jul 2024 06:49:10 GMT
- Title: Improved Esophageal Varices Assessment from Non-Contrast CT Scans
- Authors: Chunli Li, Xiaoming Zhang, Yuan Gao, Xiaoli Yin, Le Lu, Ling Zhang, Ke Yan, Yu Shi,
- Abstract summary: Esophageal varices (EV) is a serious health concern resulting from portal hypertension.
Despite non-contrast computed tomography (NC-CT) imaging being a less expensive and non-invasive imaging modality, it has yet to gain full acceptance as a primary clinical diagnostic tool for EV evaluation.
We present the Multi-Organ-cOhesion-Network (MOON), a novel framework enhancing the analysis of critical organ features in NC-CT scans for effective assessment of EV.
- Score: 15.648325577912608
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Esophageal varices (EV), a serious health concern resulting from portal hypertension, are traditionally diagnosed through invasive endoscopic procedures. Despite non-contrast computed tomography (NC-CT) imaging being a less expensive and non-invasive imaging modality, it has yet to gain full acceptance as a primary clinical diagnostic tool for EV evaluation. To overcome existing diagnostic challenges, we present the Multi-Organ-cOhesion-Network (MOON), a novel framework enhancing the analysis of critical organ features in NC-CT scans for effective assessment of EV. Drawing inspiration from the thorough assessment practices of radiologists, MOON establishes a cohesive multiorgan analysis model that unifies the imaging features of the related organs of EV, namely esophagus, liver, and spleen. This integration significantly increases the diagnostic accuracy for EV. We have compiled an extensive NC-CT dataset of 1,255 patients diagnosed with EV, spanning three grades of severity. Each case is corroborated by endoscopic diagnostic results. The efficacy of MOON has been substantiated through a validation process involving multi-fold cross-validation on 1,010 cases and an independent test on 245 cases, exhibiting superior diagnostic performance compared to methods focusing solely on the esophagus (for classifying severe grade: AUC of 0.864 versus 0.803, and for moderate to severe grades: AUC of 0.832 versus 0.793). To our knowledge, MOON is the first work to incorporate a synchronized multi-organ NC-CT analysis for EV assessment, providing a more acceptable and minimally invasive alternative for patients compared to traditional endoscopy.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - DeepVox and SAVE-CT: a contrast- and dose-independent 3D deep learning
approach for thoracic aorta segmentation and aneurysm prediction using
computed tomography scans [2.3135717943756307]
Thoracic aortic aneurysm (TAA) is a fatal disease which potentially leads to dissection or rupture through progressive enlargement of the aorta.
Scans for other indications could help on this screening, however if acquired without contrast enhancement or with low dose protocol, it can make the clinical evaluation difficult.
In this study, it was selected 587 unique CT scans including control and TAA patients, acquired with low and standard dose protocols, with or without contrast enhancement.
A novel segmentation model, DeepVox, exhibited dice score coefficients of 0.932 and 0.897 for development and test sets, respectively, with faster training speed in comparison to models
arXiv Detail & Related papers (2023-10-23T19:48:58Z) - Virtual imaging trials improved the transparency and reliability of AI systems in COVID-19 imaging [1.6040478776985583]
This study focuses on using convolutional neural networks (CNNs) for COVID-19 diagnosis using computed tomography (CT) and chest radiography (CXR)
We developed and tested multiple AI models, 3D ResNet-like and 2D EfficientNetv2 architectures, across diverse datasets.
Models trained on the most diverse datasets showed the highest external testing performance, with AUC values ranging from 0.73 to 0.76 for CT and 0.70 to 0.73 for CXR.
arXiv Detail & Related papers (2023-08-17T19:12:32Z) - HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic
Joint Infection Diagnosis Using CT Images and Text [0.0]
Prosthetic Joint Infection (PJI) is a prevalent and severe complication.
Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished.
This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques.
arXiv Detail & Related papers (2023-05-29T11:25:57Z) - Longitudinal Multimodal Transformer Integrating Imaging and Latent
Clinical Signatures From Routine EHRs for Pulmonary Nodule Classification [4.002181247287472]
We propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from EHRs for solitary pulmonary nodule (SPN) classification.
We perform unsupervised disentanglement of latent clinical signatures and leverage time-distance scaled self-attention to jointly learn from clinical signatures expressions and chest computed tomography (CT) scans.
arXiv Detail & Related papers (2023-04-06T03:03:07Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.