論文の概要: Transformers with Stochastic Competition for Tabular Data Modelling
- arxiv url: http://arxiv.org/abs/2407.13238v1
- Date: Thu, 18 Jul 2024 07:48:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 16:32:17.765509
- Title: Transformers with Stochastic Competition for Tabular Data Modelling
- Title(参考訳): 語彙データモデリングのための確率的競合を持つ変換器
- Authors: Andreas Voskou, Charalambos Christoforou, Sotirios Chatzis,
- Abstract要約: 本稿では,表型データに特化して設計された新しいディープラーニングモデルを提案する。
このモデルは、広く使用されており、公開されているさまざまなデータセットで検証されている。
これらの要素を組み込むことで、我々のモデルは高い性能が得られることを実証する。
- 参考スコア(独自算出の注目度): 6.285325771390289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the prevalence and significance of tabular data across numerous industries and fields, it has been relatively underexplored in the realm of deep learning. Even today, neural networks are often overshadowed by techniques such as gradient boosted decision trees (GBDT). However, recent models are beginning to close this gap, outperforming GBDT in various setups and garnering increased attention in the field. Inspired by this development, we introduce a novel stochastic deep learning model specifically designed for tabular data. The foundation of this model is a Transformer-based architecture, carefully adapted to cater to the unique properties of tabular data through strategic architectural modifications and leveraging two forms of stochastic competition. First, we employ stochastic "Local Winner Takes All" units to promote generalization capacity through stochasticity and sparsity. Second, we introduce a novel embedding layer that selects among alternative linear embedding layers through a mechanism of stochastic competition. The effectiveness of the model is validated on a variety of widely-used, publicly available datasets. We demonstrate that, through the incorporation of these elements, our model yields high performance and marks a significant advancement in the application of deep learning to tabular data.
- Abstract(参考訳): 多くの産業や分野にまたがる表形式のデータの普及と重要性にもかかわらず、ディープラーニングの領域では比較的過小評価されている。
現在でも、ニューラルネットワークは、勾配向上決定木(GBDT)のような技術によって隠れていることが多い。
しかし、近年のモデルはこのギャップを埋め始めており、様々な設定でGBDTを上回り、この分野の注目を集めている。
この発展に触発されて,表型データに特化して設計された,確率的深層学習モデルを導入する。
このモデルの基礎はTransformerベースのアーキテクチャであり、戦略的なアーキテクチャ変更と2種類の確率的競争の活用を通じて、表データのユニークな特性に注意深く適合する。
まず,確率性や空間性を通じて一般化能力を促進するために,確率的「ローカル・ウィンナー・テイクズ・オール」ユニットを用いる。
第2に、確率的競合のメカニズムにより、他の線形埋め込み層の中から選択する新しい埋め込み層を導入する。
モデルの有効性は、広く使用されており、公開されているさまざまなデータセットで検証される。
これらの要素の組み入れにより,本モデルは高い性能を示し,グラフデータへの深層学習の適用において著しい進歩を示す。
関連論文リスト
- A Survey on Deep Tabular Learning [0.0]
タブラルデータは、その不均一な性質と空間構造が欠如していることから、深層学習の独特な課題を提示する。
本調査では,早期完全接続ネットワーク(FCN)から,TabNet,SAINT,TabTranSELU,MambaNetといった先進アーキテクチャに至るまで,タブラルデータのディープラーニングモデルの進化を概観する。
論文 参考訳(メタデータ) (2024-10-15T20:08:08Z) - Modern Neighborhood Components Analysis: A Deep Tabular Baseline Two Decades Later [59.88557193062348]
我々は、インスタンス間のセマンティックな類似性をキャプチャする線形射影を学習するために設計された古典的近傍成分分析(NCA)を再考する。
学習目的の調整や深層学習アーキテクチャの統合といった微調整は,NAAの性能を著しく向上させることがわかった。
また,提案したModernNCAの効率性と予測精度を向上する,近隣のサンプリング戦略も導入する。
論文 参考訳(メタデータ) (2024-07-03T16:38:57Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEnは'matching'にインスパイアされている。
一致したデータセットによるトレーニングは、データ分布内に留まりながら、興味のある性質の勾配を近似することを示す。
論文 参考訳(メタデータ) (2024-05-28T11:30:19Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
本稿では,現在のアプローチの限界に対処する新しい変分オートエンコーダ(VAE)モデルを提案する。
本手法は,TVAEモデルにインスパイアされたベイジアン・ガウス混合モデル(BGM)をVAEアーキテクチャに組み込む。
我々は,2つの医療関連データセットを含む混合データ型を持つ実世界の3つのデータセットに対して,我々のモデルを徹底的に検証する。
論文 参考訳(メタデータ) (2024-04-12T12:31:06Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Generating tabular datasets under differential privacy [0.0]
ディープニューラルネットワークのトレーニングプロセスに差分プライバシー(DP)を導入する。
これにより、結果データの品質とプライバシの間にトレードオフが生じます。
我々は、注意機構を活用する新しいエンドツーエンドモデルを実装している。
論文 参考訳(メタデータ) (2023-08-28T16:35:43Z) - Towards Cross-Table Masked Pretraining for Web Data Mining [22.952238405240188]
本稿では,CM2と呼ばれる,革新的で汎用的で効率的なクロステーブル事前学習フレームワークを提案する。
実験では,CM2の最先端性能を実証し,クロステーブルプレトレーニングが様々なダウンストリームタスクを向上させることを実証した。
論文 参考訳(メタデータ) (2023-07-10T02:27:38Z) - Phantom Embeddings: Using Embedding Space for Model Regularization in
Deep Neural Networks [12.293294756969477]
機械学習モデルの強みは、データから複雑な関数近似を学ぶ能力に起因している。
複雑なモデルはトレーニングデータを記憶する傾向があり、結果としてテストデータの正規化性能が低下する。
情報豊富な潜伏埋め込みと高いクラス内相関を利用してモデルを正規化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-14T17:15:54Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
上流データにより、グラフニューラルネットワークはGBDTモデルよりも決定的な優位性を示す。
そこで本研究では,表在化学習のための現実的な診断ベンチマークを提案する。
上流と下流の特徴セットが異なる場合の擬似特徴法を提案する。
論文 参考訳(メタデータ) (2022-06-30T14:24:32Z) - Style Curriculum Learning for Robust Medical Image Segmentation [62.02435329931057]
深部セグメンテーションモデルは、トレーニングデータセットとテストデータセットの間の画像強度の分散シフトによって、しばしば劣化する。
本稿では,そのような分散シフトが存在する場合に,ロバストなセグメンテーションを確保するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-01T08:56:24Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
雑音アノテータから基底真理ラベルを学習するための完全ベイズ的枠組みを提案する。
我々のフレームワークは、ラベル分布上の生成的ベイズソフトクラスタリングモデルを古典的なDavidとSkeneのジョイントアノテータデータモデルに分解することでスケーラビリティを保証する。
論文 参考訳(メタデータ) (2021-06-20T02:15:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。