URCDM: Ultra-Resolution Image Synthesis in Histopathology
- URL: http://arxiv.org/abs/2407.13277v1
- Date: Thu, 18 Jul 2024 08:31:55 GMT
- Title: URCDM: Ultra-Resolution Image Synthesis in Histopathology
- Authors: Sarah Cechnicka, James Ball, Matthew Baugh, Hadrien Reynaud, Naomi Simmonds, Andrew P. T. Smith, Catherine Horsfield, Candice Roufosse, Bernhard Kainz,
- Abstract summary: Ultra-Resolution Cascaded Diffusion Models (URCDMs) are capable of synthesising entire histopathology images at high resolutions.
We evaluate our method on three separate datasets, consisting of brain, breast and kidney tissue.
URCDMs consistently generate outputs across various resolutions that trained evaluators cannot distinguish from real images.
- Score: 4.393805955844748
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diagnosing medical conditions from histopathology data requires a thorough analysis across the various resolutions of Whole Slide Images (WSI). However, existing generative methods fail to consistently represent the hierarchical structure of WSIs due to a focus on high-fidelity patches. To tackle this, we propose Ultra-Resolution Cascaded Diffusion Models (URCDMs) which are capable of synthesising entire histopathology images at high resolutions whilst authentically capturing the details of both the underlying anatomy and pathology at all magnification levels. We evaluate our method on three separate datasets, consisting of brain, breast and kidney tissue, and surpass existing state-of-the-art multi-resolution models. Furthermore, an expert evaluation study was conducted, demonstrating that URCDMs consistently generate outputs across various resolutions that trained evaluators cannot distinguish from real images. All code and additional examples can be found on GitHub.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Histo-Diffusion: A Diffusion Super-Resolution Method for Digital Pathology with Comprehensive Quality Assessment [6.350679043444348]
Histo-Diffusion is a novel diffusion-based method specially designed for generating and evaluating super-resolution images in digital pathology.
It includes a restoration module for histopathology prior and a controllable diffusion module for generating high-quality images.
arXiv Detail & Related papers (2024-08-27T17:31:00Z) - HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGym aims to foster whole slide image diagnosis by mimicking the real-life processes of doctors.
We offer various scenarios for different organs and cancers, including both WSI-based and selected region-based scenarios.
arXiv Detail & Related papers (2024-08-16T17:19:07Z) - Simultaneous Tri-Modal Medical Image Fusion and Super-Resolution using Conditional Diffusion Model [2.507050016527729]
Tri-modal medical image fusion can provide a more comprehensive view of the disease's shape, location, and biological activity.
Due to the limitations of imaging equipment and considerations for patient safety, the quality of medical images is usually limited.
There is an urgent need for a technology that can both enhance image resolution and integrate multi-modal information.
arXiv Detail & Related papers (2024-04-26T12:13:41Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - HiFi-Syn: Hierarchical Granularity Discrimination for High-Fidelity
Synthesis of MR Images with Structure Preservation [12.522702142958602]
We introduce hierarchical granularity discrimination, which exploits various levels of semantic information present in medical images.
Our strategy utilizes three levels of discrimination granularity: pixel-level discrimination using a Brain Memory Bank, structure-level discrimination on each brain structure with a re-weighting strategy to focus on hard samples.
Our model may offer an alternative solution in scenarios where specific MR modalities of patients are unavailable.
arXiv Detail & Related papers (2023-11-21T09:15:24Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - MRI to PET Cross-Modality Translation using Globally and Locally Aware
GAN (GLA-GAN) for Multi-Modal Diagnosis of Alzheimer's Disease [1.7499351967216341]
generative adversarial networks (GANs) with the ability to synthesize realist images have shown great potential as an alternative to standard data augmentation techniques.
We propose a novel end-to-end, globally and locally aware image-to-image translation GAN (GLA-GAN) with a multi-path architecture that enforces both global structural integrity and fidelity to local details.
arXiv Detail & Related papers (2021-08-04T16:38:33Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.