Rethinking Whole-Body CT Image Interpretation: An Abnormality-Centric Approach
- URL: http://arxiv.org/abs/2506.03238v1
- Date: Tue, 03 Jun 2025 17:57:34 GMT
- Title: Rethinking Whole-Body CT Image Interpretation: An Abnormality-Centric Approach
- Authors: Ziheng Zhao, Lisong Dai, Ya Zhang, Yanfeng Wang, Weidi Xie,
- Abstract summary: We propose a comprehensive hierarchical classification system, with 404 representative abnormal findings across all body regions.<n>We contribute a dataset containing over 14.5K CT images from multiple planes and all human body regions, and meticulously provide grounding annotations for over 19K abnormalities.<n>We propose OminiAbnorm-CT, which can automatically ground and describe abnormal findings on multi-plane and whole-body CT images based on text queries.
- Score: 57.86418347491272
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automated interpretation of CT images-particularly localizing and describing abnormal findings across multi-plane and whole-body scans-remains a significant challenge in clinical radiology. This work aims to address this challenge through four key contributions: (i) On taxonomy, we collaborate with senior radiologists to propose a comprehensive hierarchical classification system, with 404 representative abnormal findings across all body regions; (ii) On data, we contribute a dataset containing over 14.5K CT images from multiple planes and all human body regions, and meticulously provide grounding annotations for over 19K abnormalities, each linked to the detailed description and cast into the taxonomy; (iii) On model development, we propose OminiAbnorm-CT, which can automatically ground and describe abnormal findings on multi-plane and whole-body CT images based on text queries, while also allowing flexible interaction through visual prompts; (iv) On benchmarks, we establish three representative evaluation tasks based on real clinical scenarios. Through extensive experiments, we show that OminiAbnorm-CT can significantly outperform existing methods on all the tasks and metrics.
Related papers
- Imitating Radiological Scrolling: A Global-Local Attention Model for 3D Chest CT Volumes Multi-Label Anomaly Classification [0.0]
Multi-label classification of 3D CT scans is a challenging task due to the volumetric nature of the data and the variety of anomalies to be detected.<n>Existing deep learning methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies effectively.<n>We present CT-Scroll, a novel global-local attention model specifically designed to emulate the scrolling behavior of radiologists during the analysis of 3D CT scans.
arXiv Detail & Related papers (2025-03-26T15:47:50Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
There is no fully annotated CT dataset with all anatomies delineated for training.<n>We propose a novel continual learning-driven CT model that can segment complete anatomies.<n>Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies.
arXiv Detail & Related papers (2025-03-16T23:55:02Z) - RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining [64.66825253356869]
We propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities.<n>We construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans.<n>We develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks.
arXiv Detail & Related papers (2025-03-06T17:43:03Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.<n>This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - Large-scale and Fine-grained Vision-language Pre-training for Enhanced CT Image Understanding [17.783231335173486]
We propose a fine-grained vision-language model (fVLM) for anatomy-level CT image interpretation.<n>Fine-grained alignment, however, faces considerable false-negative challenges.<n>We curated the largest CT dataset to date, comprising imaging and report data from 69,086 patients.
arXiv Detail & Related papers (2025-01-24T14:50:48Z) - Vision Foundation Models for Computed Tomography [0.5320113414681007]
Foundation models (FMs) have shown transformative potential in radiology by performing diverse, complex tasks across imaging modalities.<n>Here, we developed CT-FM, a large-scale 3D image-based pre-trained model designed explicitly for various radiological tasks.<n>CT-FM was pre-trained using 148,000 computed tomography (CT) scans from the Imaging Data Commons through label-agnostic contrastive learning.
arXiv Detail & Related papers (2025-01-15T18:30:58Z) - URCDM: Ultra-Resolution Image Synthesis in Histopathology [4.393805955844748]
Ultra-Resolution Cascaded Diffusion Models (URCDMs) are capable of synthesising entire histopathology images at high resolutions.
We evaluate our method on three separate datasets, consisting of brain, breast and kidney tissue.
URCDMs consistently generate outputs across various resolutions that trained evaluators cannot distinguish from real images.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis [56.57177181778517]
RadGenome-Chest CT is a large-scale, region-guided 3D chest CT interpretation dataset based on CT-RATE.
We leverage the latest powerful universal segmentation and large language models to extend the original datasets.
arXiv Detail & Related papers (2024-04-25T17:11:37Z) - An Empirical Analysis for Zero-Shot Multi-Label Classification on
COVID-19 CT Scans and Uncurated Reports [0.5527944417831603]
pandemic resulted in vast repositories of unstructured data, including radiology reports, due to increased medical examinations.
Previous research on automated diagnosis of COVID-19 primarily focuses on X-ray images, despite their lower precision compared to computed tomography (CT) scans.
In this work, we leverage unstructured data from a hospital and harness the fine-grained details offered by CT scans to perform zero-shot multi-label classification based on contrastive visual language learning.
arXiv Detail & Related papers (2023-09-04T17:58:01Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.