Mean Teacher based SSL Framework for Indoor Localization Using Wi-Fi RSSI Fingerprinting
- URL: http://arxiv.org/abs/2407.13303v1
- Date: Thu, 18 Jul 2024 09:07:20 GMT
- Title: Mean Teacher based SSL Framework for Indoor Localization Using Wi-Fi RSSI Fingerprinting
- Authors: Sihao Li, Zhe Tang, Kyeong Soo Kim, Jeremy S. Smith,
- Abstract summary: Wi-Fi fingerprinting is widely applied for indoor localization due to the widespread availability of Wi-Fi devices.
Traditional methods are not ideal for multi-building and multi-floor environments due to the scalability issues.
This paper introduces a novel semi-supervised learning framework for neural networks based on wireless access point selection, noise injection, and Mean Teacher model.
- Score: 4.147346416230272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wi-Fi fingerprinting is widely applied for indoor localization due to the widespread availability of Wi-Fi devices. However, traditional methods are not ideal for multi-building and multi-floor environments due to the scalability issues. Therefore, more and more researchers have employed deep learning techniques to enable scalable indoor localization. This paper introduces a novel semi-supervised learning framework for neural networks based on wireless access point selection, noise injection, and Mean Teacher model, which leverages unlabeled fingerprints to enhance localization performance. The proposed framework can manage hybrid in/outsourcing and voluntarily contributed databases and continually expand the fingerprint database with newly submitted unlabeled fingerprints during service. The viability of the proposed framework was examined using two established deep-learning models with the UJIIndoorLoc database. The experimental results suggest that the proposed framework significantly improves localization performance compared to the supervised learning-based approach in terms of floor-level coordinate estimation using EvAAL metric. It shows enhancements up to 10.99% and 8.98% in the former scenario and 4.25% and 9.35% in the latter, respectively with additional studies highlight the importance of the essential components of the proposed framework.
Related papers
- Optimization Efficient Open-World Visual Region Recognition [55.76437190434433]
RegionSpot integrates position-aware localization knowledge from a localization foundation model with semantic information from a ViL model.
Experiments in open-world object recognition show that our RegionSpot achieves significant performance gain over prior alternatives.
arXiv Detail & Related papers (2023-11-02T16:31:49Z) - Federated Learning based Hierarchical 3D Indoor Localization [1.5469452301122177]
We present a federated learning (FL) framework for hierarchical 3D indoor localization using a deep neural network.
We show that by adopting a hierarchical learning scheme, we can improve the localization accuracy by up to 24.06%.
We also obtain a building and floor prediction accuracy of 99.90% and 94.87% respectively.
arXiv Detail & Related papers (2023-03-01T12:21:00Z) - FedDBL: Communication and Data Efficient Federated Deep-Broad Learning
for Histopathological Tissue Classification [65.7405397206767]
We propose Federated Deep-Broad Learning (FedDBL) to achieve superior classification performance with limited training samples and only one-round communication.
FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications.
Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk.
arXiv Detail & Related papers (2023-02-24T14:27:41Z) - AFR-Net: Attention-Driven Fingerprint Recognition Network [47.87570819350573]
We improve initial studies on the use of vision transformers (ViT) for biometric recognition, including fingerprint recognition.
We propose a realignment strategy using local embeddings extracted from intermediate feature maps within the networks to refine the global embeddings in low certainty situations.
This strategy can be applied as a wrapper to any existing deep learning network (including attention-based, CNN-based, or both) to boost its performance.
arXiv Detail & Related papers (2022-11-25T05:10:39Z) - On the Multidimensional Augmentation of Fingerprint Data for Indoor
Localization in A Large-Scale Building Complex Based on Multi-Output Gaussian
Process [3.8310036898137296]
Wi-Fi fingerprinting becomes a dominant solution for large-scale indoor localization.
The number and the distribution of Reference Points (RPs) for the measurement of localization fingerprints greatly affects the accuracy.
Data augmentation has been proposed as a feasible solution to improve the smaller number and the uneven distribution of RPs.
arXiv Detail & Related papers (2022-11-19T10:07:17Z) - Spreading Factor assisted LoRa Localization with Deep Reinforcement
Learning [7.445987710491257]
In the LoRa networks, due to the spreading factor (SF) in the network setting, traditional fingerprinting may lack representativeness of the radio map.
We propose a novel LoRa RSSI fingerprinting approach that takes into account the SF.
arXiv Detail & Related papers (2022-05-23T16:17:34Z) - Domain Adversarial Graph Convolutional Network Based on RSSI and
Crowdsensing for Indoor Localization [8.406788215294483]
We present a novel WiDAGCN model that can be trained using a small number of labeled site survey data and large amounts of unlabeled crowdsensed WiFi fingerprints.
Our system is evaluated using a public indoor localization dataset that includes multiple buildings.
arXiv Detail & Related papers (2022-04-06T08:06:27Z) - Hierarchical Multi-Building And Multi-Floor Indoor Localization Based On
Recurrent Neural Networks [2.0305676256390934]
We propose hierarchical multi-building and multi-floor indoor localization based on a recurrent neural network (RNN) using Wi-Fi fingerprinting.
The proposed scheme estimates building and floor with 100% and 95.24% accuracy, respectively, and provides three-dimensional positioning error of 8.62 m.
arXiv Detail & Related papers (2021-12-23T11:56:31Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Zero-Shot Multi-View Indoor Localization via Graph Location Networks [66.05980368549928]
indoor localization is a fundamental problem in location-based applications.
We propose a novel neural network based architecture Graph Location Networks (GLN) to perform infrastructure-free, multi-view image based indoor localization.
GLN makes location predictions based on robust location representations extracted from images through message-passing networks.
We introduce a novel zero-shot indoor localization setting and tackle it by extending the proposed GLN to a dedicated zero-shot version.
arXiv Detail & Related papers (2020-08-06T07:36:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.