A deep latent variable model for semi-supervised multi-unit soft sensing in industrial processes
- URL: http://arxiv.org/abs/2407.13310v1
- Date: Thu, 18 Jul 2024 09:13:22 GMT
- Title: A deep latent variable model for semi-supervised multi-unit soft sensing in industrial processes
- Authors: Bjarne Grimstad, Kristian Løvland, Lars S. Imsland, Vidar Gunnerud,
- Abstract summary: We introduce a deep latent variable model for semi-supervised multi-unit soft sensing.
This hierarchical, generative model is able to jointly model different units, as well as learning from both labeled and unlabeled data.
We show that by combining semi-supervised and multi-task learning, the proposed model achieves superior results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In many industrial processes, an apparent lack of data limits the development of data-driven soft sensors. There are, however, often opportunities to learn stronger models by being more data-efficient. To achieve this, one can leverage knowledge about the data from which the soft sensor is learned. Taking advantage of properties frequently possessed by industrial data, we introduce a deep latent variable model for semi-supervised multi-unit soft sensing. This hierarchical, generative model is able to jointly model different units, as well as learning from both labeled and unlabeled data. An empirical study of multi-unit soft sensing is conducted using two datasets: a synthetic dataset of single-phase fluid flow, and a large, real dataset of multi-phase flow in oil and gas wells. We show that by combining semi-supervised and multi-task learning, the proposed model achieves superior results, outperforming current leading methods for this soft sensing problem. We also show that when a model has been trained on a multi-unit dataset, it may be finetuned to previously unseen units using only a handful of data points. In this finetuning procedure, unlabeled data improve soft sensor performance; remarkably, this is true even when no labeled data are available.
Related papers
- A Predictive Model Based on Transformer with Statistical Feature Embedding in Manufacturing Sensor Dataset [2.07180164747172]
This study proposes a novel predictive model based on the Transformer, utilizing statistical feature embedding and window positional encoding.
The model's performance is evaluated in two problems: fault detection and virtual metrology, showing superior results compared to baseline models.
The results support the model's applicability across various manufacturing industries, demonstrating its potential for enhancing process management and yield.
arXiv Detail & Related papers (2024-07-09T08:59:27Z) - Multi-unit soft sensing permits few-shot learning [0.0]
A performance gain is generally attained when knowledge is transferred among strongly related soft sensor learning tasks.
A particularly relevant case for transferability is when developing soft sensors of the same type for similar, but physically different processes or units.
Applying methods that exploit transferability in this setting leads to what we call multi-unit soft sensing.
arXiv Detail & Related papers (2023-09-27T17:50:05Z) - Online Active Learning for Soft Sensor Development using Semi-Supervised
Autoencoders [0.7734726150561089]
Data-driven soft sensors are extensively used in industrial and chemical processes to predict hard-to-measure process variables.
Active learning methods can be highly beneficial as they can suggest the most informative labels to query.
In this work, we adapt some of these approaches to the stream-based scenario and show how they can be used to select the most informative data points.
arXiv Detail & Related papers (2022-12-26T09:45:41Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Soft Sensing Transformer: Hundreds of Sensors are Worth a Single Word [4.829772176792801]
We demonstrate the challenges and effectiveness of modeling industrial big data by a Soft Sensing Transformer model.
We observe the similarity of a sentence structure to the sensor readings and process the multi-dimensional sensor readings in a time series in a similar manner of sentences in natural language.
The results show that transformer model outperforms the benchmark models in soft sensing field based on auto-encoder and long short-term memory (LSTM) models.
arXiv Detail & Related papers (2021-11-10T22:31:32Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Auto-encoder based Model for High-dimensional Imbalanced Industrial Data [6.339700878842761]
We introduce a variance weighted multi-headed auto-encoder classification model that fits well into the high-dimensional and highly imbalanced data.
The model also simultaneously predicts multiple outputs by exploiting output-supervised representation learning and multi-task weighting.
arXiv Detail & Related papers (2021-08-04T14:34:59Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z) - Synthetic Data: Opening the data floodgates to enable faster, more
directed development of machine learning methods [96.92041573661407]
Many ground-breaking advancements in machine learning can be attributed to the availability of a large volume of rich data.
Many large-scale datasets are highly sensitive, such as healthcare data, and are not widely available to the machine learning community.
Generating synthetic data with privacy guarantees provides one such solution.
arXiv Detail & Related papers (2020-12-08T17:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.