Unsupervised Domain Adaptive Lane Detection via Contextual Contrast and Aggregation
- URL: http://arxiv.org/abs/2407.13328v1
- Date: Thu, 18 Jul 2024 09:29:02 GMT
- Title: Unsupervised Domain Adaptive Lane Detection via Contextual Contrast and Aggregation
- Authors: Kunyang Zhou, Yunjian Feng, Jun Li,
- Abstract summary: Existing lane detection methods exploit a pixel-wise cross-entropy loss to train detection models.
Cross-domain context dependency crucial for transferring knowledge across domains remains unexplored in existing lane detection methods.
This paper proposes a method of Domain-Adaptive lane detection via Contextual Contrast and Aggregation (DACCA)
- Score: 3.105187291566825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on two crucial issues in domain-adaptive lane detection, i.e., how to effectively learn discriminative features and transfer knowledge across domains. Existing lane detection methods usually exploit a pixel-wise cross-entropy loss to train detection models. However, the loss ignores the difference in feature representation among lanes, which leads to inefficient feature learning. On the other hand, cross-domain context dependency crucial for transferring knowledge across domains remains unexplored in existing lane detection methods. This paper proposes a method of Domain-Adaptive lane detection via Contextual Contrast and Aggregation (DACCA), consisting of two key components, i.e., cross-domain contrastive loss and domain-level feature aggregation, to realize domain-adaptive lane detection. The former can effectively differentiate feature representations among categories by taking domain-level features as positive samples. The latter fuses the domain-level and pixel-level features to strengthen cross-domain context dependency. Extensive experiments show that DACCA significantly improves the detection model's performance and outperforms existing unsupervised domain adaptive lane detection methods on six datasets, especially achieving the best performance when transferring from CULane to Tusimple (92.10% accuracy), Tusimple to CULane (41.9% F1 score), OpenLane to CULane (43.0% F1 score), and CULane to OpenLane (27.6% F1 score).
Related papers
- Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for
Multi-Source Domain Adaptation [2.734665397040629]
Multi-source Unsupervised Domain Adaptation transfers knowledge from multiple source domains with labeled data to an unlabeled target domain.
The distribution discrepancy between different domains and the noisy pseudo-labels in the target domain both lead to performance bottlenecks.
We propose an approach that integrates Attention-driven Domain fusion and Noise-Tolerant learning (ADNT) to address the two issues mentioned above.
arXiv Detail & Related papers (2022-08-05T01:08:41Z) - Multi-level Domain Adaptation for Lane Detection [16.697940571230266]
We propose a new perspective to handle cross-domain lane detection at three semantic levels of pixel, instance and category.
Specifically, at pixel level, we propose to apply cross-class confidence constraints in self-training to tackle the imbalanced confidence distribution of lane and background.
At category level, we propose an adaptive inter-domain embedding module to utilize the position prior of lanes during adaptation.
arXiv Detail & Related papers (2022-06-21T19:20:11Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Joint Distribution Alignment via Adversarial Learning for Domain
Adaptive Object Detection [11.262560426527818]
Unsupervised domain adaptive object detection aims to adapt a well-trained detector from its original source domain with rich labeled data to a new target domain with unlabeled data.
Recently, mainstream approaches perform this task through adversarial learning, yet still suffer from two limitations.
We propose a joint adaptive detection framework (JADF) to address the above challenges.
arXiv Detail & Related papers (2021-09-19T00:27:08Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Unsupervised Out-of-Domain Detection via Pre-trained Transformers [56.689635664358256]
Out-of-domain inputs can lead to unpredictable outputs and sometimes catastrophic safety issues.
Our work tackles the problem of detecting out-of-domain samples with only unsupervised in-domain data.
Two domain-specific fine-tuning approaches are further proposed to boost detection accuracy.
arXiv Detail & Related papers (2021-06-02T05:21:25Z) - Disentanglement-based Cross-Domain Feature Augmentation for Effective
Unsupervised Domain Adaptive Person Re-identification [87.72851934197936]
Unsupervised domain adaptive (UDA) person re-identification (ReID) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain for person matching.
One challenge is how to generate target domain samples with reliable labels for training.
We propose a Disentanglement-based Cross-Domain Feature Augmentation strategy.
arXiv Detail & Related papers (2021-03-25T15:28:41Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.