論文の概要: CiteFusion: An Ensemble Framework for Citation Intent Classification Harnessing Dual-Model Binary Couples and SHAP Analyses
- arxiv url: http://arxiv.org/abs/2407.13329v2
- Date: Wed, 12 Mar 2025 11:59:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:36:36.206413
- Title: CiteFusion: An Ensemble Framework for Citation Intent Classification Harnessing Dual-Model Binary Couples and SHAP Analyses
- Title(参考訳): CiteFusion:デュアルモデルバイナリカップとSHAP解析を併用したCitation Intent分類のためのアンサンブルフレームワーク
- Authors: Lorenzo Paolini, Sahar Vahdati, Angelo Di Iorio, Robert Wardenga, Ivan Heibi, Silvio Peroni,
- Abstract要約: 本研究は,多クラスCitation Intent Classificationタスクに対処するアンサンブルフレームワークであるCiteFusionを紹介する。
CiteFusionは最先端のパフォーマンスを実現し、Macro-F1スコアはSciCiteが89.60%、ACL-ARCが76.24%だった。
我々は、SciCiteで開発されたCiteFusionモデルを利用して、引用意図を分類するWebベースのアプリケーションをリリースする。
- 参考スコア(独自算出の注目度): 1.7812428873698407
- License:
- Abstract: Understanding the motivations underlying scholarly citations is critical for evaluating research impact and fostering transparent scholarly communication. This study introduces CiteFusion, an ensemble framework designed to address the multiclass Citation Intent Classification (CIC) task on benchmark datasets, SciCite and ACL-ARC. The framework decomposes the task into binary classification subtasks, utilizing complementary pairs of SciBERT and XLNet models fine-tuned independently for each citation intent. These base models are aggregated through a feedforward neural network meta-classifier, ensuring robust performance in imbalanced and data-scarce scenarios. To enhance interpretability, SHAP (SHapley Additive exPlanations) is employed to analyze token-level contributions and interactions among base models, providing transparency into classification dynamics. We further investigate the semantic role of structural context by incorporating section titles into input sentences, demonstrating their significant impact on classification accuracy and model reliability. Experimental results show that CiteFusion achieves state-of-the-art performance, with Macro-F1 scores of 89.60% on SciCite and 76.24% on ACL-ARC. The original intents from both datasets are mapped to Citation Typing Ontology (CiTO) object properties to ensure interoperability and reusability. This mapping highlights overlaps between the two datasets labels, enhancing their understandability and reusability. Finally, we release a web-based application that classifies citation intents leveraging CiteFusion models developed on SciCite.
- Abstract(参考訳): 学術的引用の根底にある動機を理解することは、研究効果を評価し、透明な学術的コミュニケーションを促進するために重要である。
本研究では,ベンチマークデータセットであるSciCiteとACL-ARCのマルチクラスCitation Intent Classification(CIC)タスクに対処するために設計されたアンサンブルフレームワークであるCiteFusionを紹介する。
このフレームワークはタスクをバイナリ分類サブタスクに分解し、各引用意図に対して独立に微調整されたSciBERTとXLNetの補足ペアを利用する。
これらのベースモデルは、フィードフォワードニューラルネットワークメタ分類器を通じて集約され、不均衡なシナリオとデータスカースシナリオで堅牢なパフォーマンスを保証する。
解釈可能性を高めるため、SHAP (SHapley Additive exPlanations) を用いてトークンレベルのコントリビューションとベースモデル間の相互作用を分析し、分類力学の透明性を提供する。
さらに、セクションタイトルを入力文に組み込むことで、構造的文脈の意味的役割を解明し、分類精度とモデルの信頼性に大きな影響を与えることを示す。
CiteFusionは、SciCiteで89.60%、ACL-ARCで76.24%のスコアで最先端のパフォーマンスを達成した。
両方のデータセットの元々の意図は、相互運用性と再利用性を保証するために、Citation Typing Ontology(CiTO)オブジェクトプロパティにマップされます。
このマッピングは、2つのデータセットラベル間のオーバーラップを強調し、その理解性と再利用性を高める。
最後に、SciCiteで開発されたCiteFusionモデルを利用して、引用意図を分類するWebベースのアプリケーションをリリースする。
関連論文リスト
- Label-template based Few-Shot Text Classification with Contrastive Learning [7.964862748983985]
本稿では,単純かつ効果的なテキスト分類フレームワークを提案する。
ラベルテンプレートは入力文に埋め込まれ、クラスラベルの潜在値を完全に活用する。
教師付きコントラスト学習を用いて、サポートサンプルとクエリサンプル間の相互作用情報をモデル化する。
論文 参考訳(メタデータ) (2024-12-13T12:51:50Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
大規模言語モデル(LLM)が,その世代を理論的にどのように説明するかを考察する。
提案手法は帰属に基づく説明よりも「偽り」が少ないことを示す。
論文 参考訳(メタデータ) (2024-06-28T20:06:30Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Exploring the Power of Topic Modeling Techniques in Analyzing Customer
Reviews: A Comparative Analysis [0.0]
大量のテキストデータをオンラインで分析するために、機械学習と自然言語処理アルゴリズムがデプロイされている。
本研究では,顧客レビューに特化して用いられる5つのトピックモデリング手法について検討・比較する。
以上の結果から,BERTopicはより意味のあるトピックを抽出し,良好な結果を得ることができた。
論文 参考訳(メタデータ) (2023-08-19T08:18:04Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z) - Automated Speech Scoring System Under The Lens: Evaluating and
interpreting the linguistic cues for language proficiency [26.70127591966917]
従来の機械学習モデルを用いて、音声認識タスクを分類と回帰問題の両方として定式化する。
まず,5つのカテゴリー(頻度,発音,内容,文法,語彙,音響)で言語学の特徴を抽出し,応答を学習する。
比較すると,回帰に基づくモデルでは,分類法と同等かそれ以上の性能があることがわかった。
論文 参考訳(メタデータ) (2021-11-30T06:28:58Z) - Enhancing Identification of Structure Function of Academic Articles
Using Contextual Information [6.28532577139029]
本稿では,学術論文の構造的機能を明らかにするためのコーパスとして,ACLカンファレンスの記事を取り上げる。
従来の機械学習モデルとディープラーニングモデルを用いて、様々な特徴入力に基づいて分類器を構築する。
2) に触発された本論文は,ディープラーニングモデルに文脈情報を導入し,重要な結果を得た。
論文 参考訳(メタデータ) (2021-11-28T11:21:21Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。