NeuroPlug: Plugging Side-Channel Leaks in NPUs using Space Filling Curves
- URL: http://arxiv.org/abs/2407.13383v1
- Date: Thu, 18 Jul 2024 10:40:41 GMT
- Title: NeuroPlug: Plugging Side-Channel Leaks in NPUs using Space Filling Curves
- Authors: Nivedita Shrivastava, Smruti R. Sarangi,
- Abstract summary: All published countermeasures (CMs) add noise N to a signal X.
We show that it is easy to filter this noise out using targeted measurements, statistical analyses and different kinds of reasonably-assumed side information.
We present a novel CM NeuroPlug that is immune to these attack methodologies mainly because we use a different formulation CX + N.
- Score: 0.4143603294943439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Securing deep neural networks (DNNs) from side-channel attacks is an important problem as of today, given the substantial investment of time and resources in acquiring the raw data and training complex models. All published countermeasures (CMs) add noise N to a signal X (parameter of interest such as the net memory traffic that is leaked). The adversary observes X+N ; we shall show that it is easy to filter this noise out using targeted measurements, statistical analyses and different kinds of reasonably-assumed side information. We present a novel CM NeuroPlug that is immune to these attack methodologies mainly because we use a different formulation CX + N . We introduce a multiplicative variable C that naturally arises from feature map compression; it plays a key role in obfuscating the parameters of interest. Our approach is based on mapping all the computations to a 1-D space filling curve and then performing a sequence of tiling, compression and binning-based obfuscation operations. We follow up with proposing a theoretical framework based on Mellin transforms that allows us to accurately quantify the size of the search space as a function of the noise we add and the side information that an adversary possesses. The security guarantees provided by NeuroPlug are validated using a battery of statistical and information theory-based tests. We also demonstrate a substantial performance enhancement of 15% compared to the closest competing work.
Related papers
- Augmented Neural Fine-Tuning for Efficient Backdoor Purification [16.74156528484354]
Recent studies have revealed the vulnerability of deep neural networks (DNNs) to various backdoor attacks.
We propose Neural mask Fine-Tuning (NFT) with an aim to optimally re-organize the neuron activities.
NFT relaxes the trigger synthesis process and eliminates the requirement of the adversarial search module.
arXiv Detail & Related papers (2024-07-14T02:36:54Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Efficient Privacy-Preserving Convolutional Spiking Neural Networks with
FHE [1.437446768735628]
Homomorphic Encryption (FHE) is a key technology for privacy-preserving computation.
FHE has limitations in processing continuous non-polynomial functions.
We present a framework called FHE-DiCSNN for homomorphic SNNs.
FHE-DiCSNN achieves an accuracy of 97.94% on ciphertexts, with a loss of only 0.53% compared to the original network's accuracy of 98.47%.
arXiv Detail & Related papers (2023-09-16T15:37:18Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Partially Oblivious Neural Network Inference [4.843820624525483]
We show that for neural network models, like CNNs, some information leakage can be acceptable.
We experimentally demonstrate that in a CIFAR-10 network we can leak up to $80%$ of the model's weights with practically no security impact.
arXiv Detail & Related papers (2022-10-27T05:39:36Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
We use the inner dimension of deep neural network based Autoencoders as summary statistics.
To create an incentive for the encoder to encode all the parameter-related information but not the noise, we give the decoder access to explicit or implicit information that has been used to generate the training data.
arXiv Detail & Related papers (2022-01-28T12:00:31Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
This paper presents a novel methodology for permeability prediction from micro-CT scans of geological rock samples.
The training data set for CNNs dedicated to permeability prediction consists of permeability labels that are typically generated by classical lattice Boltzmann methods (LBM)
We instead perform direct numerical simulation (DNS) by solving the stationary Stokes equation in an efficient and distributed-parallel manner.
arXiv Detail & Related papers (2021-09-04T08:43:19Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
We study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes.
Our goal is to misclassify a specific sample into a target class without any sample modification.
By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem.
arXiv Detail & Related papers (2021-02-21T03:13:27Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
We study neural-linear bandits for solving problems where both exploration and representation learning play an important role.
We propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online.
arXiv Detail & Related papers (2021-02-07T14:19:07Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - QUANOS- Adversarial Noise Sensitivity Driven Hybrid Quantization of
Neural Networks [3.2242513084255036]
QUANOS is a framework that performs layer-specific hybrid quantization based on Adversarial Noise Sensitivity (ANS)
Our experiments on CIFAR10, CIFAR100 datasets show that QUANOS outperforms homogenously quantized 8-bit precision baseline in terms of adversarial robustness.
arXiv Detail & Related papers (2020-04-22T15:56:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.