Lightweight Uncertainty Quantification with Simplex Semantic Segmentation for Terrain Traversability
- URL: http://arxiv.org/abs/2407.13392v1
- Date: Thu, 18 Jul 2024 11:00:49 GMT
- Title: Lightweight Uncertainty Quantification with Simplex Semantic Segmentation for Terrain Traversability
- Authors: Judith Dijk, Gertjan Burghouts, Kapil D. Katyal, Bryanna Y. Yeh, Craig T. Knuth, Ella Fokkinga, Tejaswi Kasarla, Pascal Mettes,
- Abstract summary: We propose a simple, light-weight module that can be connected to any pretrained image segmentation model.
Our module is based on maximum separation of the segmentation classes by respective prototype vectors.
We demonstrate the effectiveness of our module for terrain segmentation.
- Score: 12.765558639563649
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For navigation of robots, image segmentation is an important component to determining a terrain's traversability. For safe and efficient navigation, it is key to assess the uncertainty of the predicted segments. Current uncertainty estimation methods are limited to a specific choice of model architecture, are costly in terms of training time, require large memory for inference (ensembles), or involve complex model architectures (energy-based, hyperbolic, masking). In this paper, we propose a simple, light-weight module that can be connected to any pretrained image segmentation model, regardless of its architecture, with marginal additional computation cost because it reuses the model's backbone. Our module is based on maximum separation of the segmentation classes by respective prototype vectors. This optimizes the probability that out-of-distribution segments are projected in between the prototype vectors. The uncertainty value in the classification label is obtained from the distance to the nearest prototype. We demonstrate the effectiveness of our module for terrain segmentation.
Related papers
- Hierarchical Uncertainty Estimation for Medical Image Segmentation
Networks [1.9564356751775307]
Uncertainty exists in both images (noise) and manual annotations (human errors and bias) used for model training.
We propose a simple yet effective method for estimating uncertainties at multiple levels.
We demonstrate that a deep learning segmentation network such as U-net, can achieve a high segmentation performance.
arXiv Detail & Related papers (2023-08-16T16:09:23Z) - SlimSeg: Slimmable Semantic Segmentation with Boundary Supervision [54.16430358203348]
We propose a simple but effective slimmable semantic segmentation (SlimSeg) method, which can be executed at different capacities during inference.
We show that our proposed SlimSeg with various mainstream networks can produce flexible models that provide dynamic adjustment of computational cost and better performance.
arXiv Detail & Related papers (2022-07-13T14:41:05Z) - Rethinking Semantic Segmentation: A Prototype View [126.59244185849838]
We present a nonparametric semantic segmentation model based on non-learnable prototypes.
Our framework yields compelling results over several datasets.
We expect this work will provoke a rethink of the current de facto semantic segmentation model design.
arXiv Detail & Related papers (2022-03-28T21:15:32Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
We propose a novel method for fine-grained high-quality image segmentation of both objects and scenes.
Inspired by dilation and erosion from morphological image processing techniques, we treat the pixel level segmentation problems as squeezing object boundary.
Our method yields large gains on COCO, Cityscapes, for both instance and semantic segmentation and outperforms previous state-of-the-art PointRend in both accuracy and speed under the same setting.
arXiv Detail & Related papers (2021-05-25T04:58:51Z) - Scaling Semantic Segmentation Beyond 1K Classes on a Single GPU [87.48110331544885]
We propose a novel training methodology to train and scale the existing semantic segmentation models.
We demonstrate a clear benefit of our approach on a dataset with 1284 classes, bootstrapped from LVIS and COCO annotations, with three times better mIoU than the DeeplabV3+ model.
arXiv Detail & Related papers (2020-12-14T13:12:38Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - Spatial Pyramid Based Graph Reasoning for Semantic Segmentation [67.47159595239798]
We apply graph convolution into the semantic segmentation task and propose an improved Laplacian.
The graph reasoning is directly performed in the original feature space organized as a spatial pyramid.
We achieve comparable performance with advantages in computational and memory overhead.
arXiv Detail & Related papers (2020-03-23T12:28:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.