PICASSO: A Feed-Forward Framework for Parametric Inference of CAD Sketches via Rendering Self-Supervision
- URL: http://arxiv.org/abs/2407.13394v2
- Date: Wed, 04 Dec 2024 22:07:40 GMT
- Title: PICASSO: A Feed-Forward Framework for Parametric Inference of CAD Sketches via Rendering Self-Supervision
- Authors: Ahmet Serdar Karadeniz, Dimitrios Mallis, Nesryne Mejri, Kseniya Cherenkova, Anis Kacem, Djamila Aouada,
- Abstract summary: PICASSO is a framework for the parameterization of 2D CAD sketches from hand-drawn and precise sketch images.
Our framework leverages rendering self-supervision to enable the pre-training of a CAD sketch parameterization network.
- Score: 12.644368401427135
- License:
- Abstract: This work introduces PICASSO, a framework for the parameterization of 2D CAD sketches from hand-drawn and precise sketch images. PICASSO converts a given CAD sketch image into parametric primitives that can be seamlessly integrated into CAD software. Our framework leverages rendering self-supervision to enable the pre-training of a CAD sketch parameterization network using sketch renderings only, thereby eliminating the need for corresponding CAD parameterization. Thus, we significantly reduce reliance on parameter-level annotations, which are often unavailable, particularly for hand-drawn sketches. The two primary components of PICASSO are (1) a Sketch Parameterization Network (SPN) that predicts a series of parametric primitives from CAD sketch images, and (2) a Sketch Rendering Network (SRN) that renders parametric CAD sketches in a differentiable manner and facilitates the computation of a rendering (image-level) loss for self-supervision. We demonstrate that the proposed PICASSO can achieve reasonable performance even when finetuned with only a small number of parametric CAD sketches. Extensive evaluation on the widely used SketchGraphs and CAD as Language datasets validates the effectiveness of the proposed approach on zero- and few-shot learning scenarios.
Related papers
- SwiftSketch: A Diffusion Model for Image-to-Vector Sketch Generation [57.47730473674261]
We introduce SwiftSketch, a model for image-conditioned vector sketch generation that can produce high-quality sketches in less than a second.
SwiftSketch operates by progressively denoising stroke control points sampled from a Gaussian distribution.
ControlSketch is a method that enhances SDS-based techniques by incorporating precise spatial control through a depth-aware ControlNet.
arXiv Detail & Related papers (2025-02-12T18:57:12Z) - DAVINCI: A Single-Stage Architecture for Constrained CAD Sketch Inference [12.644368401427135]
DAVINCI is a unified architecture for single-stage Computer-Aided Design (CAD) sketch parameterization and constraint inference.
By jointly learning both outputs, DAVINCI minimizes error accumulation and enhances the performance of constrained CAD sketch inference.
DAVINCI achieves state-of-the-art results on the large-scale SketchGraphs dataset.
arXiv Detail & Related papers (2024-10-30T09:42:47Z) - PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction [86.726941702182]
We introduce geometric guidance into the reconstruction network PS-CAD.
We provide the geometry of surfaces where the current reconstruction differs from the complete model as a point cloud.
Second, we use geometric analysis to extract a set of planar prompts, that correspond to candidate surfaces.
arXiv Detail & Related papers (2024-05-24T03:43:55Z) - PPI-NET: End-to-End Parametric Primitive Inference [24.31083483088741]
In engineering applications, line, circle, arc, and point are collectively referred to as primitives.
We propose an efficient and accurate end-to-end method to infer parametric primitives from hand-drawn sketch images.
arXiv Detail & Related papers (2023-08-03T03:50:49Z) - SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude
Operations [21.000539206470897]
SECAD-Net is an end-to-end neural network aimed at reconstructing compact and easy-to-edit CAD models.
We show superiority over state-of-the-art alternatives including the closely related method for supervised CAD reconstruction.
arXiv Detail & Related papers (2023-03-19T09:26:03Z) - Make Your Brief Stroke Real and Stereoscopic: 3D-Aware Simplified Sketch
to Portrait Generation [51.64832538714455]
Existing studies only generate portraits in the 2D plane with fixed views, making the results less vivid.
In this paper, we present Stereoscopic Simplified Sketch-to-Portrait (SSSP), which explores the possibility of creating Stereoscopic 3D-aware portraits.
Our key insight is to design sketch-aware constraints that can fully exploit the prior knowledge of a tri-plane-based 3D-aware generative model.
arXiv Detail & Related papers (2023-02-14T06:28:42Z) - Reconstructing editable prismatic CAD from rounded voxel models [16.03976415868563]
We introduce a novel neural network architecture to solve this challenging task.
Our method reconstructs the input geometry in the voxel space by decomposing the shape.
During inference, we obtain the CAD data by first searching a database of 2D constrained sketches.
arXiv Detail & Related papers (2022-09-02T16:44:10Z) - Vitruvion: A Generative Model of Parametric CAD Sketches [22.65229769427499]
We present an approach to generative modeling of parametric CAD sketches.
Our model, trained on real-world designs from the SketchGraphs dataset, autoregressively synthesizes sketches as sequences of primitives.
We condition the model on various contexts, including partial sketches (primers) and images of hand-drawn sketches.
arXiv Detail & Related papers (2021-09-29T01:02:30Z) - Patch2CAD: Patchwise Embedding Learning for In-the-Wild Shape Retrieval
from a Single Image [58.953160501596805]
We propose a novel approach towards constructing a joint embedding space between 2D images and 3D CAD models in a patch-wise fashion.
Our approach is more robust than state of the art in real-world scenarios without any exact CAD matches.
arXiv Detail & Related papers (2021-08-20T20:58:52Z) - Cloud2Curve: Generation and Vectorization of Parametric Sketches [109.02932608241227]
We present Cloud2Curve, a generative model for scalable high-resolution vector sketches.
We evaluate the generation and vectorization capabilities of our model on Quick, Draw! and KMNIST datasets.
arXiv Detail & Related papers (2021-03-29T12:09:42Z) - Sketch-BERT: Learning Sketch Bidirectional Encoder Representation from
Transformers by Self-supervised Learning of Sketch Gestalt [125.17887147597567]
We present a model of learning Sketch BiBERT Representation from Transformer (Sketch-BERT)
We generalize BERT to sketch domain, with the novel proposed components and pre-training algorithms.
We show that the learned representation of Sketch-BERT can help and improve the performance of the downstream tasks of sketch recognition, sketch retrieval, and sketch gestalt.
arXiv Detail & Related papers (2020-05-19T01:35:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.