論文の概要: WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration
- arxiv url: http://arxiv.org/abs/2407.13426v1
- Date: Thu, 18 Jul 2024 11:51:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 15:30:46.003786
- Title: WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration
- Title(参考訳): WiNet:効果的な医用画像登録のためのウェーブレットベースのインクリメンタルラーニング
- Authors: Xinxing Cheng, Xi Jia, Wenqi Lu, Qiufu Li, Linlin Shen, Alexander Krull, Jinming Duan,
- Abstract要約: 深部画像登録は異常な精度と高速な推測を示した。
近年の進歩は、粗大から粗大の方法で密度変形場を推定するために、複数のカスケードまたはピラミッドアーキテクチャを採用している。
本稿では,様々なスケールにわたる変位/速度場に対して,スケールワイブレット係数を漸進的に推定するモデル駆動WiNetを提案する。
- 参考スコア(独自算出の注目度): 68.25711405944239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep image registration has demonstrated exceptional accuracy and fast inference. Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner. However, due to the cascaded nature and repeated composition/warping operations on feature maps, these methods negatively increase memory usage during training and testing. Moreover, such approaches lack explicit constraints on the learning process of small deformations at different scales, thus lacking explainability. In this study, we introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales, utilizing the wavelet coefficients derived from the original input image pair. By exploiting the properties of the wavelet transform, these estimated coefficients facilitate the seamless reconstruction of a full-resolution displacement/velocity field via our devised inverse discrete wavelet transform (IDWT) layer. This approach avoids the complexities of cascading networks or composition operations, making our WiNet an explainable and efficient competitor with other coarse-to-fine methods. Extensive experimental results from two 3D datasets show that our WiNet is accurate and GPU efficient. The code is available at https://github.com/x-xc/WiNet .
- Abstract(参考訳): 深部画像登録は異常な精度と高速な推測を示した。
近年の進歩は、粗大から粗大の方法で密度変形場を推定するために、複数のカスケードまたはピラミッドアーキテクチャを採用している。
しかし,これらの手法は,特徴マップのカスケード性やコンポジション/ウォーピング操作を繰り返しているため,トレーニングやテストの際のメモリ使用量を負に増加させる。
さらに、このようなアプローチは、異なるスケールでの小さな変形の学習過程に明確な制約を欠いているため、説明可能性に欠ける。
本研究では,元の入力画像対から導出したウェーブレット係数を利用して,様々なスケールにわたる変位/速度場に対するスケールワイブレット係数を漸進的に推定するモデル駆動WiNetを提案する。
ウェーブレット変換の特性を利用して、これらの推定係数は、設計した逆ウェーブレット変換(IDWT)層を介して全分解能変位/速度場をシームレスに再構成する。
このアプローチは、カスケードネットワークやコンポジション操作の複雑さを回避し、WiNetは他の粗いメソッドと説明可能かつ効率的な競合となる。
2つの3Dデータセットによる大規模な実験結果から、WiNetは正確でGPU効率が良いことが分かる。
コードはhttps://github.com/x-xc/WiNetで公開されている。
関連論文リスト
- Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
3つのSARデータセットによる実験結果から、我々のWBANetは現代最先端の手法を著しく上回っていることが明らかとなった。
我々のWBANetは、それぞれのデータセットで98.33%、96.65%、96.62%の正確な分類(PCC)を達成している。
論文 参考訳(メタデータ) (2024-07-18T04:36:10Z) - An Innovative Networks in Federated Learning [3.38220960870904]
本稿では,Wavelet Kolmogorov-Arnold Networks(Wav-KAN)の連合学習への応用について述べる。
我々は,連続ウェーブレット変換 (CWT) と離散ウェーブレット変換 (DWT) の両方を検討した。
さまざまなデータセットで大規模な実験を行い、解釈可能性、計算速度、トレーニング、テスト精度の点で、Wav-KANの優れた性能を実証した。
論文 参考訳(メタデータ) (2024-05-28T05:20:01Z) - QGait: Toward Accurate Quantization for Gait Recognition with Binarized Input [17.017127559393398]
バックプロパゲーション時の円関数の勾配をよりよくシミュレートする,微分可能なソフト量子化器を提案する。
これにより、ネットワークは微妙な入力摂動から学習することができる。
量子化エラーをシミュレートしながら収束を確保するためのトレーニング戦略をさらに洗練する。
論文 参考訳(メタデータ) (2024-05-22T17:34:18Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Single Image Depth Estimation using Wavelet Decomposition [37.486778463181]
単眼画像から精度の高い深度を高効率で予測する新しい手法を提案する。
この最適効率はウェーブレット分解を利用して達成される。
我々はスパースウェーブレット係数を予測して高忠実度深度マップを再構築できることを実証した。
論文 参考訳(メタデータ) (2021-06-03T17:42:25Z) - Learning a Model-Driven Variational Network for Deformable Image
Registration [89.9830129923847]
VR-Netは、教師なしの変形可能な画像登録のための新しいカスケード可変ネットワークである。
登録精度において最先端のディープラーニング手法よりも優れています。
ディープラーニングの高速推論速度と変分モデルのデータ効率を維持している。
論文 参考訳(メタデータ) (2021-05-25T21:37:37Z) - InversionNet3D: Efficient and Scalable Learning for 3D Full Waveform
Inversion [14.574636791985968]
本稿では,3次元FWIのための効率よくスケーラブルなエンコーダデコーダネットワークであるInversionNet3Dを提案する。
提案手法では,エンコーダ内のグループ畳み込みを用いて,複数のソースから情報を得るための効果的な階層を構築する。
3D Kimberlinaデータセットの実験は、InversionNet3Dがベースラインと比較して計算コストとメモリフットプリントを削減できることを示しています。
論文 参考訳(メタデータ) (2021-03-25T22:24:57Z) - Scale-covariant and scale-invariant Gaussian derivative networks [0.0]
本稿では,大規模空間論と深層学習のハイブリッドアプローチとして,カスケード内のパラメータ化スケール空間演算を結合してディープラーニングアーキテクチャを構築する。
その結果,学習データに存在しない大規模パターンの分類に優れた性能が得られた。
論文 参考訳(メタデータ) (2020-11-30T13:15:10Z) - Joint Multi-Dimension Pruning via Numerical Gradient Update [120.59697866489668]
本稿では,空間,深さ,チャネルの3つの重要な側面において,ネットワークを同時に切断する方法であるジョイント・マルチディメンジョン・プルーニング(ジョイント・プルーニング)を提案する。
本手法は,1つのエンドツーエンドトレーニングにおいて3次元にわたって協調的に最適化され,従来よりも効率がよいことを示す。
論文 参考訳(メタデータ) (2020-05-18T17:57:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。