Improving Out-of-Distribution Generalization of Trajectory Prediction for Autonomous Driving via Polynomial Representations
- URL: http://arxiv.org/abs/2407.13431v2
- Date: Mon, 26 Aug 2024 09:58:04 GMT
- Title: Improving Out-of-Distribution Generalization of Trajectory Prediction for Autonomous Driving via Polynomial Representations
- Authors: Yue Yao, Shengchao Yan, Daniel Goehring, Wolfram Burgard, Joerg Reichardt,
- Abstract summary: We present an OoD testing protocol that homogenizes datasets and prediction tasks across two large-scale motion datasets.
With a much smaller model size, training effort, and inference time, we reach near SotA performance for ID testing and significantly improve robustness in OoD testing.
- Score: 16.856874154363588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robustness against Out-of-Distribution (OoD) samples is a key performance indicator of a trajectory prediction model. However, the development and ranking of state-of-the-art (SotA) models are driven by their In-Distribution (ID) performance on individual competition datasets. We present an OoD testing protocol that homogenizes datasets and prediction tasks across two large-scale motion datasets. We introduce a novel prediction algorithm based on polynomial representations for agent trajectory and road geometry on both the input and output sides of the model. With a much smaller model size, training effort, and inference time, we reach near SotA performance for ID testing and significantly improve robustness in OoD testing. Within our OoD testing protocol, we further study two augmentation strategies of SotA models and their effects on model generalization. Highlighting the contrast between ID and OoD performance, we suggest adding OoD testing to the evaluation criteria of trajectory prediction models.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Decoupled and Interactive Regression Modeling for High-performance One-stage 3D Object Detection [8.531052087985097]
Inadequate bounding box modeling in regression tasks constrains the performance of one-stage 3D object detection.
We propose Decoupled and Interactive Regression Modeling (DIRM) for one-stage detection.
arXiv Detail & Related papers (2024-09-01T10:47:22Z) - Conditional Unscented Autoencoders for Trajectory Prediction [13.121738145903532]
The CVAE is one of the most widely-used models in trajectory prediction for AD.
We leverage recent advances in the space of the VAE, the foundation of the CVAE, which show that a simple change in the sampling procedure can greatly benefit performance.
We show wide applicability of our models by evaluating them on the INTERACTION prediction dataset, outperforming the state of the art, as well as at the task of image modeling on the CelebA dataset.
arXiv Detail & Related papers (2023-10-30T18:59:32Z) - EquiDiff: A Conditional Equivariant Diffusion Model For Trajectory
Prediction [11.960234424309265]
We propose EquiDiff, a deep generative model for predicting future vehicle trajectories.
EquiDiff is based on the conditional diffusion model, which generates future trajectories by incorporating historical information and random Gaussian noise.
Our results demonstrate that EquiDiff outperforms other baseline models in short-term prediction, but has slightly higher errors for long-term prediction.
arXiv Detail & Related papers (2023-08-12T13:17:09Z) - A positive feedback method based on F-measure value for Salient Object
Detection [1.9249287163937976]
This paper proposes a positive feedback method based on F-measure value for salient object detection (SOD)
Our proposed method takes an image to be detected and inputs it into several existing models to obtain their respective prediction maps.
Experimental results on five publicly available datasets show that our proposed positive feedback method outperforms the latest 12 methods in five evaluation metrics for saliency map prediction.
arXiv Detail & Related papers (2023-04-28T04:05:13Z) - TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision [70.05605071885914]
We propose a novel modification of the self-supervised training algorithm SwAV that adds the ability to adapt to single test samples.
We show the success of our method on the common benchmark dataset CIFAR10-C.
arXiv Detail & Related papers (2022-05-18T05:43:06Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.