ASTRA: A Scene-aware TRAnsformer-based model for trajectory prediction
- URL: http://arxiv.org/abs/2501.09878v1
- Date: Thu, 16 Jan 2025 23:28:30 GMT
- Title: ASTRA: A Scene-aware TRAnsformer-based model for trajectory prediction
- Authors: Izzeddin Teeti, Aniket Thomas, Munish Monga, Sachin Kumar, Uddeshya Singh, Andrew Bradley, Biplab Banerjee, Fabio Cuzzolin,
- Abstract summary: ASTRA (A Scene-aware TRAnsformer-based model for trajectory prediction) is a light-weight pedestrian trajectory forecasting model.
We utilise a U-Net-based feature extractor, via its latent vector representation, to capture scene representations and a graph-aware transformer encoder for capturing social interactions.
- Score: 15.624698974735654
- License:
- Abstract: We present ASTRA (A} Scene-aware TRAnsformer-based model for trajectory prediction), a light-weight pedestrian trajectory forecasting model that integrates the scene context, spatial dynamics, social inter-agent interactions and temporal progressions for precise forecasting. We utilised a U-Net-based feature extractor, via its latent vector representation, to capture scene representations and a graph-aware transformer encoder for capturing social interactions. These components are integrated to learn an agent-scene aware embedding, enabling the model to learn spatial dynamics and forecast the future trajectory of pedestrians. The model is designed to produce both deterministic and stochastic outcomes, with the stochastic predictions being generated by incorporating a Conditional Variational Auto-Encoder (CVAE). ASTRA also proposes a simple yet effective weighted penalty loss function, which helps to yield predictions that outperform a wide array of state-of-the-art deterministic and generative models. ASTRA demonstrates an average improvement of 27%/10% in deterministic/stochastic settings on the ETH-UCY dataset, and 26% improvement on the PIE dataset, respectively, along with seven times fewer parameters than the existing state-of-the-art model (see Figure 1). Additionally, the model's versatility allows it to generalize across different perspectives, such as Bird's Eye View (BEV) and Ego-Vehicle View (EVV).
Related papers
- Improving Out-of-Distribution Generalization of Trajectory Prediction for Autonomous Driving via Polynomial Representations [16.856874154363588]
We present an OoD testing protocol that homogenizes datasets and prediction tasks across two large-scale motion datasets.
With a much smaller model size, training effort, and inference time, we reach near SotA performance for ID testing and significantly improve robustness in OoD testing.
arXiv Detail & Related papers (2024-07-18T12:00:32Z) - S^2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR [50.435592120607815]
Scene graph generation (SGG) of surgical procedures is crucial in enhancing holistically cognitive intelligence in the operating room (OR)
Previous works have primarily relied on multi-stage learning, where the generated semantic scene graphs depend on intermediate processes with pose estimation and object detection.
In this study, we introduce a novel single-stage bi-modal transformer framework for SGG in the OR, termed S2Former-OR.
arXiv Detail & Related papers (2024-02-22T11:40:49Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Conditional Unscented Autoencoders for Trajectory Prediction [13.121738145903532]
The CVAE is one of the most widely-used models in trajectory prediction for AD.
We leverage recent advances in the space of the VAE, the foundation of the CVAE, which show that a simple change in the sampling procedure can greatly benefit performance.
We show wide applicability of our models by evaluating them on the INTERACTION prediction dataset, outperforming the state of the art, as well as at the task of image modeling on the CelebA dataset.
arXiv Detail & Related papers (2023-10-30T18:59:32Z) - ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation [0.0]
ADAPT is a novel approach for jointly predicting the trajectories of all agents in the scene with dynamic weight learning.
Our approach outperforms state-of-the-art methods in both single-agent and multi-agent settings.
arXiv Detail & Related papers (2023-07-26T13:41:51Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation.
We propose a framework that decouples occupancy prediction into: representation learning and prediction within the learned latent space.
arXiv Detail & Related papers (2022-10-03T22:04:00Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction [5.346782918364054]
We propose a novel CNN-based spatial-temporal graph framework GraphCNT to support more efficient and accurate trajectory predictions.
In contrast to conventional models, both the spatial and temporal modeling of our model are computed within each local time window.
Our model achieves better performance in terms of both efficiency and accuracy as compared with state-of-the-art models on various trajectory prediction benchmark datasets.
arXiv Detail & Related papers (2020-03-16T12:56:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.