SCAPE: A Simple and Strong Category-Agnostic Pose Estimator
- URL: http://arxiv.org/abs/2407.13483v1
- Date: Thu, 18 Jul 2024 13:02:57 GMT
- Title: SCAPE: A Simple and Strong Category-Agnostic Pose Estimator
- Authors: Yujia Liang, Zixuan Ye, Wenze Liu, Hao Lu,
- Abstract summary: Category-Agnostic Pose Estimation (CAPE) aims to localize keypoints on an object of any category given few exemplars in an in-context manner.
We introduce two key modules: a global keypoint feature perceptor to inject global semantic information into support keypoints, and a keypoint attention refiner to enhance inter-node correlation between keypoints.
SCAPE outperforms prior arts by 2.2 and 1.3 PCK under 1-shot and 5-shot settings with faster inference speed and lighter model capacity.
- Score: 6.705257644513057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Category-Agnostic Pose Estimation (CAPE) aims to localize keypoints on an object of any category given few exemplars in an in-context manner. Prior arts involve sophisticated designs, e.g., sundry modules for similarity calculation and a two-stage framework, or takes in extra heatmap generation and supervision. We notice that CAPE is essentially a task about feature matching, which can be solved within the attention process. Therefore we first streamline the architecture into a simple baseline consisting of several pure self-attention layers and an MLP regression head -- this simplification means that one only needs to consider the attention quality to boost the performance of CAPE. Towards an effective attention process for CAPE, we further introduce two key modules: i) a global keypoint feature perceptor to inject global semantic information into support keypoints, and ii) a keypoint attention refiner to enhance inter-node correlation between keypoints. They jointly form a Simple and strong Category-Agnostic Pose Estimator (SCAPE). Experimental results show that SCAPE outperforms prior arts by 2.2 and 1.3 PCK under 1-shot and 5-shot settings with faster inference speed and lighter model capacity, excelling in both accuracy and efficiency. Code and models are available at https://github.com/tiny-smart/SCAPE
Related papers
- Meta-Point Learning and Refining for Category-Agnostic Pose Estimation [46.98479393474727]
Category-agnostic pose estimation (CAPE) aims to predict keypoints for arbitrary classes given a few support images annotated with keypoints.
We propose a novel framework for CAPE based on such potential keypoints (named as meta-points)
arXiv Detail & Related papers (2024-03-20T14:54:33Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - Open-Vocabulary Animal Keypoint Detection with Semantic-feature Matching [74.75284453828017]
Open-Vocabulary Keypoint Detection (OVKD) task is innovatively designed to use text prompts for identifying arbitrary keypoints across any species.
We have developed a novel framework named Open-Vocabulary Keypoint Detection with Semantic-feature Matching (KDSM)
This framework combines vision and language models, creating an interplay between language features and local keypoint visual features.
arXiv Detail & Related papers (2023-10-08T07:42:41Z) - Learning Feature Matching via Matchable Keypoint-Assisted Graph Neural
Network [52.29330138835208]
Accurately matching local features between a pair of images is a challenging computer vision task.
Previous studies typically use attention based graph neural networks (GNNs) with fully-connected graphs over keypoints within/across images.
We propose MaKeGNN, a sparse attention-based GNN architecture which bypasses non-repeatable keypoints and leverages matchable ones to guide message passing.
arXiv Detail & Related papers (2023-07-04T02:50:44Z) - Pose for Everything: Towards Category-Agnostic Pose Estimation [93.07415325374761]
Category-Agnostic Pose Estimation (CAPE) aims to create a pose estimation model capable of detecting the pose of any class of object given only a few samples with keypoint definition.
A transformer-based Keypoint Interaction Module (KIM) is proposed to capture both the interactions among different keypoints and the relationship between the support and query images.
We also introduce Multi-category Pose (MP-100) dataset, which is a 2D pose dataset of 100 object categories containing over 20K instances and is well-designed for developing CAPE algorithms.
arXiv Detail & Related papers (2022-07-21T09:40:54Z) - Rethinking Query-Key Pairwise Interactions in Vision Transformers [5.141895475956681]
We propose key-only attention, which excludes query-key pairwise interactions and uses a compute-efficient saliency-gate to obtain attention weights.
We develop a new self-attention model family, LinGlos, which reach state-of-the-art accuracies on the parameter-limited setting of ImageNet classification benchmark.
arXiv Detail & Related papers (2022-07-01T03:36:49Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
Few-shot classification is a challenging problem that aims to learn a model that can adapt to unseen classes given a few labeled samples.
Recent approaches pre-train a feature extractor, and then fine-tune for episodic meta-learning.
We propose a strategy to cross-attend and re-weight discriminative features for few-shot classification.
arXiv Detail & Related papers (2022-03-25T06:14:51Z) - Learning What Not to Segment: A New Perspective on Few-Shot Segmentation [63.910211095033596]
Recently few-shot segmentation (FSS) has been extensively developed.
This paper proposes a fresh and straightforward insight to alleviate the problem.
In light of the unique nature of the proposed approach, we also extend it to a more realistic but challenging setting.
arXiv Detail & Related papers (2022-03-15T03:08:27Z) - Rethinking Keypoint Representations: Modeling Keypoints and Poses as
Objects for Multi-Person Human Pose Estimation [79.78017059539526]
We propose a new heatmap-free keypoint estimation method in which individual keypoints and sets of spatially related keypoints (i.e., poses) are modeled as objects within a dense single-stage anchor-based detection framework.
In experiments, we observe that KAPAO is significantly faster and more accurate than previous methods, which suffer greatly from heatmap post-processing.
Our large model, KAPAO-L, achieves an AP of 70.6 on the Microsoft COCO Keypoints validation set without test-time augmentation.
arXiv Detail & Related papers (2021-11-16T15:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.